CubeWorldMods/LocalizationMod/utfconvert.cpp

337 lines
11 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include "utfconvert.h"
#include <stdint.h>
static inline uint16_t byteswap_ushort(uint16_t number)
{
#if defined(_MSC_VER) && _MSC_VER > 1310
return _byteswap_ushort(number);
#elif defined(__GNUC__)
return __builtin_bswap16(number);
#else
return (number >> 8) | (number << 8);
#endif
}
////////////////////////////////////////
// 以下转换都是在小端序下进行 //
////////////////////////////////////////
// 从UTF16编码字符串构建需要带BOM标记
std::string utf16_to_utf8(const std::u16string& u16str)
{
if (u16str.empty()){ return std::string(); }
//Byte Order Mark
char16_t bom = u16str[0];
switch (bom){
case 0xFEFF: //Little Endian
return utf16le_to_utf8(u16str);
break;
case 0xFFFE: //Big Endian
return utf16be_to_utf8(u16str);
break;
default:
return std::string();
}
}
// 从UTF16 LE编码的字符串创建
std::string utf16le_to_utf8(const std::u16string& u16str)
{
if (u16str.empty()){ return std::string(); }
const char16_t* p = u16str.data();
std::u16string::size_type len = u16str.length();
if (p[0] == 0xFEFF){
p += 1; //带有bom标记后移
len -= 1;
}
// 开始转换
std::string u8str;
u8str.reserve(len * 3);
char16_t u16char;
for (std::u16string::size_type i = 0; i < len; ++i){
// 这里假设是在小端序下(大端序不适用)
u16char = p[i];
// 1字节表示部分
if (u16char < 0x0080){
// u16char <= 0x007f
// U- 0000 0000 ~ 0000 07ff : 0xxx xxxx
u8str.push_back((char)(u16char & 0x00FF)); // 取低8bit
continue;
}
// 2 字节能表示部分
if (u16char >= 0x0080 && u16char <= 0x07FF){
// * U-00000080 - U-000007FF: 110xxxxx 10xxxxxx
u8str.push_back((char)(((u16char >> 6) & 0x1F) | 0xC0));
u8str.push_back((char)((u16char & 0x3F) | 0x80));
continue;
}
// 代理项对部分(4字节表示)
if (u16char >= 0xD800 && u16char <= 0xDBFF) {
// * U-00010000 - U-001FFFFF: 1111 0xxx 10xxxxxx 10xxxxxx 10xxxxxx
uint32_t highSur = u16char;
uint32_t lowSur = p[++i];
// 从代理项对到UNICODE代码点转换
// 1、从高代理项减去0xD800获取有效10bit
// 2、从低代理项减去0xDC00获取有效10bit
// 3、加上0x10000获取UNICODE代码点值
uint32_t codePoint = highSur - 0xD800;
codePoint <<= 10;
codePoint |= lowSur - 0xDC00;
codePoint += 0x10000;
// 转为4字节UTF8编码表示
u8str.push_back((char)((codePoint >> 18) | 0xF0));
u8str.push_back((char)(((codePoint >> 12) & 0x3F) | 0x80));
u8str.push_back((char)(((codePoint >> 06) & 0x3F) | 0x80));
u8str.push_back((char)((codePoint & 0x3F) | 0x80));
continue;
}
// 3 字节表示部分
{
// * U-0000E000 - U-0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
u8str.push_back((char)(((u16char >> 12) & 0x0F) | 0xE0));
u8str.push_back((char)(((u16char >> 6) & 0x3F) | 0x80));
u8str.push_back((char)((u16char & 0x3F) | 0x80));
continue;
}
}
return u8str;
}
// 从UTF16BE编码字符串创建
std::string utf16be_to_utf8(const std::u16string& u16str)
{
if (u16str.empty()){ return std::string(); }
const char16_t* p = u16str.data();
std::u16string::size_type len = u16str.length();
if (p[0] == 0xFEFF){
p += 1; //带有bom标记后移
len -= 1;
}
// 开始转换
std::string u8str;
u8str.reserve(len * 2);
char16_t u16char; //u16le 低字节存低位,高字节存高位
for (std::u16string::size_type i = 0; i < len; ++i) {
// 这里假设是在小端序下(大端序不适用)
u16char = p[i];
// 将大端序转为小端序
u16char = byteswap_ushort(u16char);
// 1字节表示部分
if (u16char < 0x0080) {
// u16char <= 0x007f
// U- 0000 0000 ~ 0000 07ff : 0xxx xxxx
u8str.push_back((char)(u16char & 0x00FF));
continue;
}
// 2 字节能表示部分
if (u16char >= 0x0080 && u16char <= 0x07FF) {
// * U-00000080 - U-000007FF: 110xxxxx 10xxxxxx
u8str.push_back((char)(((u16char >> 6) & 0x1F) | 0xC0));
u8str.push_back((char)((u16char & 0x3F) | 0x80));
continue;
}
// 代理项对部分(4字节表示)
if (u16char >= 0xD800 && u16char <= 0xDBFF) {
// * U-00010000 - U-001FFFFF: 1111 0xxx 10xxxxxx 10xxxxxx 10xxxxxx
uint32_t highSur = u16char;
uint32_t lowSur = byteswap_ushort(p[++i]);
// 从代理项对到UNICODE代码点转换
// 1、从高代理项减去0xD800获取有效10bit
// 2、从低代理项减去0xDC00获取有效10bit
// 3、加上0x10000获取UNICODE代码点值
uint32_t codePoint = highSur - 0xD800;
codePoint <<= 10;
codePoint |= lowSur - 0xDC00;
codePoint += 0x10000;
// 转为4字节UTF8编码表示
u8str.push_back((char)((codePoint >> 18) | 0xF0));
u8str.push_back((char)(((codePoint >> 12) & 0x3F) | 0x80));
u8str.push_back((char)(((codePoint >> 06) & 0x3F) | 0x80));
u8str.push_back((char)((codePoint & 0x3F) | 0x80));
continue;
}
// 3 字节表示部分
{
// * U-0000E000 - U-0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
u8str.push_back((char)(((u16char >> 12) & 0x0F) | 0xE0));
u8str.push_back((char)(((u16char >> 6) & 0x3F) | 0x80));
u8str.push_back((char)((u16char & 0x3F) | 0x80));
continue;
}
}
return u8str;
}
// 获取转换为UTF-16 LE编码的字符串
std::u16string utf8_to_utf16le(const std::string& u8str, bool addbom, bool* ok)
{
std::u16string u16str;
u16str.reserve(u8str.size());
if (addbom) {
u16str.push_back(0xFEFF); //bom (字节表示为 FF FE)
}
std::string::size_type len = u8str.length();
const unsigned char* p = (unsigned char*)(u8str.data());
// 判断是否具有BOM(判断长度小于3字节的情况)
if (len > 3 && p[0] == 0xEF && p[1] == 0xBB && p[2] == 0xBF){
p += 3;
len -= 3;
}
bool is_ok = true;
// 开始转换
for (std::string::size_type i = 0; i < len; ++i) {
uint32_t ch = p[i]; // 取出UTF8序列首字节
if ((ch & 0x80) == 0) {
// 最高位为0只有1字节表示UNICODE代码点
u16str.push_back((char16_t)ch);
continue;
}
switch (ch & 0xF0)
{
case 0xF0: // 4 字节字符, 0x10000 到 0x10FFFF
{
uint32_t c2 = p[++i];
uint32_t c3 = p[++i];
uint32_t c4 = p[++i];
// 计算UNICODE代码点值(第一个字节取低3bit其余取6bit)
uint32_t codePoint = ((ch & 0x07U) << 18) | ((c2 & 0x3FU) << 12) | ((c3 & 0x3FU) << 6) | (c4 & 0x3FU);
if (codePoint >= 0x10000)
{
// 在UTF-16中 U+10000 到 U+10FFFF 用两个16bit单元表示, 代理项对.
// 1、将代码点减去0x10000(得到长度为20bit的值)
// 2、high 代理项 是将那20bit中的高10bit加上0xD800(110110 00 00000000)
// 3、low 代理项 是将那20bit中的低10bit加上0xDC00(110111 00 00000000)
codePoint -= 0x10000;
u16str.push_back((char16_t)((codePoint >> 10) | 0xD800U));
u16str.push_back((char16_t)((codePoint & 0x03FFU) | 0xDC00U));
}
else
{
// 在UTF-16中 U+0000 到 U+D7FF 以及 U+E000 到 U+FFFF 与Unicode代码点值相同.
// U+D800 到 U+DFFF 是无效字符, 为了简单起见,这里假设它不存在(如果有则不编码)
u16str.push_back((char16_t)codePoint);
}
}
break;
case 0xE0: // 3 字节字符, 0x800 到 0xFFFF
{
uint32_t c2 = p[++i];
uint32_t c3 = p[++i];
// 计算UNICODE代码点值(第一个字节取低4bit其余取6bit)
uint32_t codePoint = ((ch & 0x0FU) << 12) | ((c2 & 0x3FU) << 6) | (c3 & 0x3FU);
u16str.push_back((char16_t)codePoint);
}
break;
case 0xD0: // 2 字节字符, 0x80 到 0x7FF
case 0xC0:
{
uint32_t c2 = p[++i];
// 计算UNICODE代码点值(第一个字节取低5bit其余取6bit)
uint32_t codePoint = ((ch & 0x1FU) << 12) | ((c2 & 0x3FU) << 6);
u16str.push_back((char16_t)codePoint);
}
break;
default: // 单字节部分(前面已经处理,所以不应该进来)
is_ok = false;
break;
}
}
if (ok != NULL) { *ok = is_ok; }
return u16str;
}
// 获取转换为UTF-16 BE的字符串
std::u16string utf8_to_utf16be(const std::string& u8str, bool addbom, bool* ok)
{
// 先获取utf16le编码字符串
std::u16string u16str = utf8_to_utf16le(u8str, addbom, ok);
// 将小端序转换为大端序
for (size_t i = 0; i < u16str.size(); ++i) {
u16str[i] = byteswap_ushort(u16str[i]);
}
return u16str;
}
// 从UTF16编码的字符串创建
size_t utf16_to_char(const std::u16string& u16str, char *buffer) {
size_t length = 2;
if (u16str.empty()){
*buffer++ = '\0';
*buffer++ = '\0';
return length;
}
const char16_t* p = u16str.data();
std::u16string::size_type len = u16str.length();
if (p[0] == 0xFEFF){
p += 1; //带有bom标记后移
len -= 1;
}
// 开始转换
char16_t u16char; //u16le 低字节存低位,高字节存高位
for (std::u16string::size_type i = 0; i < len; ++i) {
u16char = p[i];
*buffer++ = (u16char & 0xFF00) >> 8;
*buffer++ = (u16char & 0xFF);
length += 2;
}
*buffer++ = '\0';
*buffer++ = '\0';
return length;
}
size_t utf8_to_char(const std::string& u8str, char* buffer) {
size_t length = 1;
if (u8str.empty()){
*buffer++ = '\0';
return length;
}
const char* p = u8str.c_str();
std::string::size_type len = u8str.length();
// 开始转换
for (std::string::size_type i = 0; i < len; ++i) {
*buffer++ = p[i];
length ++;
}
*buffer++ = '\0';
return length;
}
size_t hex_to_char(const char *hex, char *buffer) {
size_t i,n = 0;
for(i = 0; hex[i]; i += 2) {
if(hex[i] >= 'A' && hex[i] <= 'F')
buffer[n] = hex[i] - 'A' + 10;
else if(hex[i] >= 'a' && hex[i] <= 'f')
buffer[n] = hex[i] - 'a' + 10;
else buffer[n] = hex[i] - '0';
if(hex[i + 1] >= 'A' && hex[i + 1] <= 'F')
buffer[n] = (buffer[n] << 4) | (hex[i + 1] - 'A' + 10);
else if(hex[i + 1] >= 'a' && hex[i + 1] <= 'f')
buffer[n] = (buffer[n] << 4) | (hex[i + 1] - 'a' + 10);
else buffer[n] = (buffer[n] << 4) | (hex[i + 1] - '0');
++n;
}
buffer[n++] = '\0';
return n;
}