Douzero_Resnet/douzero/evaluation/simulation.py

176 lines
7.0 KiB
Python
Raw Normal View History

2021-09-07 16:38:34 +08:00
import multiprocessing as mp
import pickle
import douzero.env.env
from douzero.dmc.models import Model
from douzero.env.game import GameEnv
import torch
import numpy as np
import BidModel
2021-12-08 17:16:27 +08:00
import psutil
2021-09-07 16:38:34 +08:00
def load_card_play_models(card_play_model_path_dict):
players = {}
2021-12-05 12:03:30 +08:00
for position in ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']:
2021-09-07 16:38:34 +08:00
if card_play_model_path_dict[position] == 'rlcard':
from .rlcard_agent import RLCardAgent
players[position] = RLCardAgent(position)
elif card_play_model_path_dict[position] == 'random':
from .random_agent import RandomAgent
players[position] = RandomAgent()
else:
from .deep_agent import DeepAgent
players[position] = DeepAgent(position, card_play_model_path_dict[position])
return players
def mp_simulate(card_play_data_list, card_play_model_path_dict, q, output, bid_output, title):
players = load_card_play_models(card_play_model_path_dict)
EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
env = GameEnv(players)
bid_model = None
if bid_output:
model = Model(device=0)
bid_model = model.get_model("bidding")
bid_model_path = card_play_model_path_dict["landlord"].replace("landlord", "bidding")
weights = torch.load(bid_model_path)
bid_model.load_state_dict(weights)
bid_model.eval()
for idx, card_play_data in enumerate(card_play_data_list):
env.card_play_init(card_play_data)
if bid_output:
output = True
bid_results = []
bid_values = []
bid_info_list = [
2021-12-05 12:03:30 +08:00
np.array([[-1,-1,-1,-1],
[-1,-1,-1,-1],
[-1,-1,-1,-1],
[-1,-1,-1,-1]]),
np.array([[0,0,0,0],
[-1,-1,-1,-1],
[-1,-1,-1,-1],
[-1,-1,-1,-1]]),
np.array([[1,0,0,0],
[-1,-1,-1,-1],
[-1,-1,-1,-1],
[-1,-1,-1,-1]]),
np.array([[0,0,0,0],
[0,0,0,0],
[-1,-1,-1,-1],
[-1,-1,-1,-1]]),
np.array([[0,0,1,0],
[0,0,0,1],
[-1,-1,-1,-1],
[-1,-1,-1,-1]]),
np.array([[0,1,0,0],
[0,0,1,0],
[0,0,0,1],
[-1,-1,-1,-1]]),
np.array([[0,1,0,0],
[0,0,1,0],
[1,0,0,0],
[-1,-1,-1,-1]]),
2021-09-07 16:38:34 +08:00
]
for bid_info in bid_info_list:
bid_obs = douzero.env.env._get_obs_for_bid(1, bid_info, card_play_data["landlord"])
result = bid_model.forward(torch.tensor(bid_obs["z_batch"], device=torch.device("cuda:0")), torch.tensor(bid_obs["x_batch"], device=torch.device("cuda:0")), True)
values = result["values"]
bid = 1 if values[1] > values[0] else 0
bid_results.append(bid)
bid_values.append(values[bid])
result2 = BidModel.predict_env(card_play_data["landlord"])
print("".join([EnvCard2RealCard[c] for c in card_play_data["landlord"]]), end="")
print(" bid: %i|%i%i|%i%i|%i (%.3f %.3f %.3f %.3f %.3f %.3f) %.1f" % (bid_results[0],bid_results[1],bid_results[2],bid_results[3],bid_results[4],bid_results[5],bid_values[0],bid_values[1],bid_values[2],bid_values[3],bid_values[4],bid_values[5], result2))
if output and not bid_output:
print("\nStart ------- " + title)
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord"]]))
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord_down"]]))
2021-12-05 12:03:30 +08:00
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord_front"]]))
2021-09-07 16:38:34 +08:00
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord_up"]]))
# print(card_play_data)
count = 0
while not env.game_over and not bid_output:
action = env.step()
if output:
2021-12-05 12:20:49 +08:00
if count % 4 == 3:
2021-09-07 16:38:34 +08:00
end = "\n"
else:
end = " "
if len(action) == 0:
print("Pass", end=end)
else:
print("".join([EnvCard2RealCard[c] for c in action]), end=end)
count+=1
2021-12-08 17:16:27 +08:00
if output and idx % 10 == 0 and not bid_output:
2021-09-07 16:38:34 +08:00
print("\nindex", idx)
# print("End -------")
env.reset()
q.put((env.num_wins['landlord'],
env.num_wins['farmer'],
env.num_scores['landlord'],
env.num_scores['farmer']
))
def data_allocation_per_worker(card_play_data_list, num_workers):
card_play_data_list_each_worker = [[] for k in range(num_workers)]
for idx, data in enumerate(card_play_data_list):
card_play_data_list_each_worker[idx % num_workers].append(data)
return card_play_data_list_each_worker
def evaluate(landlord, landlord_up, landlord_down, eval_data, num_workers, output, output_bid, title):
with open(eval_data, 'rb') as f:
card_play_data_list = pickle.load(f)
card_play_data_list_each_worker = data_allocation_per_worker(
card_play_data_list, num_workers)
del card_play_data_list
card_play_model_path_dict = {
'landlord': landlord,
'landlord_up': landlord_up,
2021-12-05 12:03:30 +08:00
'landlord_front': landlord_up,
2021-09-07 16:38:34 +08:00
'landlord_down': landlord_down}
num_landlord_wins = 0
num_farmer_wins = 0
num_landlord_scores = 0
num_farmer_scores = 0
ctx = mp.get_context('spawn')
q = ctx.SimpleQueue()
processes = []
for card_paly_data in card_play_data_list_each_worker:
p = ctx.Process(
target=mp_simulate,
args=(card_paly_data, card_play_model_path_dict, q, output, output_bid, title))
p.start()
2021-12-08 17:16:27 +08:00
2021-09-07 16:38:34 +08:00
processes.append(p)
2021-12-08 17:16:27 +08:00
parent = psutil.Process()
parent.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS)
for child in parent.children():
child.nice(psutil.BELOW_NORMAL_PRIORITY_CLASS)
2021-09-07 16:38:34 +08:00
for p in processes:
p.join()
for i in range(num_workers):
result = q.get()
num_landlord_wins += result[0]
num_farmer_wins += result[1]
num_landlord_scores += result[2]
num_farmer_scores += result[3]
num_total_wins = num_landlord_wins + num_farmer_wins
print('WP results:')
print('landlord : Farmers - {} : {}'.format(num_landlord_wins / num_total_wins, num_farmer_wins / num_total_wins))
print('ADP results:')
2021-12-08 17:16:27 +08:00
print('landlord : Farmers - {} : {}'.format(num_landlord_scores / num_total_wins, 3 * num_farmer_scores / num_total_wins))