2021-09-07 16:38:34 +08:00
|
|
|
|
"""
|
|
|
|
|
This file includes the torch models. We wrap the three
|
|
|
|
|
models into one class for convenience.
|
|
|
|
|
"""
|
2021-12-15 22:09:18 +08:00
|
|
|
|
import os
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
import torch
|
2021-12-14 22:55:03 +08:00
|
|
|
|
import onnxruntime
|
|
|
|
|
from onnxruntime.datasets import get_example
|
2021-09-07 16:38:34 +08:00
|
|
|
|
from torch import nn
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def to_numpy(tensor):
|
|
|
|
|
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
|
|
|
|
|
2021-09-07 16:38:34 +08:00
|
|
|
|
class LandlordLstmModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.lstm = nn.LSTM(432, 128, batch_first=True)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
self.dense1 = nn.Linear(887 + 128, 1024)
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.dense2 = nn.Linear(1024, 1024)
|
|
|
|
|
self.dense3 = nn.Linear(1024, 768)
|
|
|
|
|
self.dense4 = nn.Linear(768, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 256)
|
|
|
|
|
self.dense6 = nn.Linear(256, 1)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-15 12:26:47 +08:00
|
|
|
|
def get_onnx_params(self):
|
|
|
|
|
return {
|
|
|
|
|
'args': (
|
|
|
|
|
torch.tensor(np.zeros((1, 5, 432)), dtype=torch.float32),
|
|
|
|
|
torch.tensor(np.zeros((1, 887)), dtype=torch.float32),
|
|
|
|
|
),
|
|
|
|
|
'input_names': ['z_batch','x_batch'],
|
|
|
|
|
'output_names': ['values'],
|
|
|
|
|
'dynamic_axes': {
|
|
|
|
|
'z_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
},
|
|
|
|
|
'x_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
lstm_out, (h_n, _) = self.lstm(z)
|
|
|
|
|
lstm_out = lstm_out[:,-1,:]
|
|
|
|
|
x = torch.cat([lstm_out,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=x)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
class FarmerLstmModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.lstm = nn.LSTM(432, 128, batch_first=True)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
self.dense1 = nn.Linear(1219 + 128, 1024)
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.dense2 = nn.Linear(1024, 1024)
|
|
|
|
|
self.dense3 = nn.Linear(1024, 768)
|
|
|
|
|
self.dense4 = nn.Linear(768, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 256)
|
|
|
|
|
self.dense6 = nn.Linear(256, 1)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-15 12:26:47 +08:00
|
|
|
|
def get_onnx_params(self):
|
|
|
|
|
return {
|
|
|
|
|
'args': (
|
|
|
|
|
torch.tensor(np.zeros((1, 5, 432)), dtype=torch.float32),
|
|
|
|
|
torch.tensor(np.zeros((1, 1219)), dtype=torch.float32)
|
|
|
|
|
),
|
|
|
|
|
'input_names': ['z_batch','x_batch'],
|
|
|
|
|
'output_names': ['values'],
|
|
|
|
|
'dynamic_axes': {
|
|
|
|
|
'z_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
},
|
|
|
|
|
'x_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
lstm_out, (h_n, _) = self.lstm(z)
|
|
|
|
|
lstm_out = lstm_out[:,-1,:]
|
|
|
|
|
x = torch.cat([lstm_out,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=x)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-12 14:01:40 +08:00
|
|
|
|
class LandlordLstmModelLegacy(nn.Module):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.lstm = nn.LSTM(432, 128, batch_first=True)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
self.dense1 = nn.Linear(860 + 128, 1024)
|
|
|
|
|
self.dense2 = nn.Linear(1024, 1024)
|
|
|
|
|
self.dense3 = nn.Linear(1024, 768)
|
|
|
|
|
self.dense4 = nn.Linear(768, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 256)
|
|
|
|
|
self.dense6 = nn.Linear(256, 1)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
lstm_out, (h_n, _) = self.lstm(z)
|
|
|
|
|
lstm_out = lstm_out[:,-1,:]
|
|
|
|
|
x = torch.cat([lstm_out,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=x)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-12 14:01:40 +08:00
|
|
|
|
class FarmerLstmModelLegacy(nn.Module):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.lstm = nn.LSTM(432, 128, batch_first=True)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
self.dense1 = nn.Linear(1192 + 128, 1024)
|
|
|
|
|
self.dense2 = nn.Linear(1024, 1024)
|
|
|
|
|
self.dense3 = nn.Linear(1024, 768)
|
|
|
|
|
self.dense4 = nn.Linear(768, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 256)
|
|
|
|
|
self.dense6 = nn.Linear(256, 1)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
lstm_out, (h_n, _) = self.lstm(z)
|
|
|
|
|
lstm_out = lstm_out[:,-1,:]
|
|
|
|
|
x = torch.cat([lstm_out,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=x)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
class GeneralModel1(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
# input: B * 32 * 57
|
|
|
|
|
# self.lstm = nn.LSTM(162, 512, batch_first=True)
|
|
|
|
|
self.conv_z_1 = torch.nn.Sequential(
|
|
|
|
|
nn.Conv2d(1, 64, kernel_size=(1,57)), # B * 1 * 64 * 32
|
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
|
nn.BatchNorm2d(64),
|
|
|
|
|
)
|
|
|
|
|
# Squeeze(-1) B * 64 * 16
|
|
|
|
|
self.conv_z_2 = torch.nn.Sequential(
|
|
|
|
|
nn.Conv1d(64, 128, kernel_size=(5,), padding=2), # 128 * 16
|
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
|
nn.BatchNorm1d(128),
|
|
|
|
|
)
|
|
|
|
|
self.conv_z_3 = torch.nn.Sequential(
|
|
|
|
|
nn.Conv1d(128, 256, kernel_size=(3,), padding=1), # 256 * 8
|
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
|
nn.BatchNorm1d(256),
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
self.conv_z_4 = torch.nn.Sequential(
|
|
|
|
|
nn.Conv1d(256, 512, kernel_size=(3,), padding=1), # 512 * 4
|
|
|
|
|
nn.ReLU(inplace=True),
|
|
|
|
|
nn.BatchNorm1d(512),
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.dense1 = nn.Linear(519 + 1024, 1024)
|
|
|
|
|
self.dense2 = nn.Linear(1024, 512)
|
|
|
|
|
self.dense3 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense6 = nn.Linear(512, 1)
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
z = z.unsqueeze(1)
|
|
|
|
|
z = self.conv_z_1(z)
|
|
|
|
|
z = z.squeeze(-1)
|
|
|
|
|
z = torch.max_pool1d(z, 2)
|
|
|
|
|
z = self.conv_z_2(z)
|
|
|
|
|
z = torch.max_pool1d(z, 2)
|
|
|
|
|
z = self.conv_z_3(z)
|
|
|
|
|
z = torch.max_pool1d(z, 2)
|
|
|
|
|
z = self.conv_z_4(z)
|
|
|
|
|
z = torch.max_pool1d(z, 2)
|
|
|
|
|
z = z.flatten(1,2)
|
|
|
|
|
x = torch.cat([z,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=x)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 用于ResNet18和34的残差块,用的是2个3x3的卷积
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
|
|
|
expansion = 1
|
|
|
|
|
|
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
|
|
|
super(BasicBlock, self).__init__()
|
|
|
|
|
self.conv1 = nn.Conv1d(in_planes, planes, kernel_size=(3,),
|
|
|
|
|
stride=(stride,), padding=1, bias=False)
|
|
|
|
|
self.bn1 = nn.BatchNorm1d(planes)
|
|
|
|
|
self.conv2 = nn.Conv1d(planes, planes, kernel_size=(3,),
|
|
|
|
|
stride=(1,), padding=1, bias=False)
|
|
|
|
|
self.bn2 = nn.BatchNorm1d(planes)
|
|
|
|
|
self.shortcut = nn.Sequential()
|
|
|
|
|
# 经过处理后的x要与x的维度相同(尺寸和深度)
|
|
|
|
|
# 如果不相同,需要添加卷积+BN来变换为同一维度
|
|
|
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
|
|
|
self.shortcut = nn.Sequential(
|
|
|
|
|
nn.Conv1d(in_planes, self.expansion * planes,
|
|
|
|
|
kernel_size=(1,), stride=(stride,), bias=False),
|
|
|
|
|
nn.BatchNorm1d(self.expansion * planes)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
|
|
|
out = self.bn2(self.conv2(out))
|
|
|
|
|
out += self.shortcut(x)
|
|
|
|
|
out = F.relu(out)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
2021-12-12 14:01:40 +08:00
|
|
|
|
class GeneralModelLegacy(nn.Module):
|
|
|
|
|
def __init__(self):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
super().__init__()
|
|
|
|
|
self.in_planes = 80
|
2021-12-05 12:03:30 +08:00
|
|
|
|
#input 1*108*41
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.conv1 = nn.Conv1d(40, 80, kernel_size=(3,),
|
2021-12-10 16:12:50 +08:00
|
|
|
|
stride=(2,), padding=1, bias=False) #1*108*80
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
self.bn1 = nn.BatchNorm1d(80)
|
|
|
|
|
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.layer1 = self._make_layer(BasicBlock, 80, 2, stride=2)#1*27*80
|
|
|
|
|
self.layer2 = self._make_layer(BasicBlock, 160, 2, stride=2)#1*14*160
|
|
|
|
|
self.layer3 = self._make_layer(BasicBlock, 320, 2, stride=2)#1*7*320
|
2021-12-10 16:12:50 +08:00
|
|
|
|
self.layer4 = self._make_layer(BasicBlock, 640, 2, stride=2)#1*4*640
|
2021-09-07 16:38:34 +08:00
|
|
|
|
# self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
self.linear1 = nn.Linear(640 * BasicBlock.expansion * 4 + 24 * 4, 2048)
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.linear2 = nn.Linear(2048, 1024)
|
|
|
|
|
self.linear3 = nn.Linear(1024, 512)
|
|
|
|
|
self.linear4 = nn.Linear(512, 256)
|
|
|
|
|
self.linear5 = nn.Linear(256, 1)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
|
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
|
|
|
layers = []
|
|
|
|
|
for stride in strides:
|
|
|
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
|
|
|
self.in_planes = planes * block.expansion
|
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
out = F.relu(self.bn1(self.conv1(z)))
|
|
|
|
|
out = self.layer1(out)
|
|
|
|
|
out = self.layer2(out)
|
|
|
|
|
out = self.layer3(out)
|
2021-12-05 12:03:30 +08:00
|
|
|
|
out = self.layer4(out)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
out = out.flatten(1,2)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
out = torch.cat([x,x,x,x,out], dim=-1)
|
|
|
|
|
out = F.leaky_relu_(self.linear1(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear2(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear3(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear4(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear5(out))
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=out)
|
2021-12-12 14:01:40 +08:00
|
|
|
|
|
|
|
|
|
class GeneralModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.in_planes = 80
|
|
|
|
|
#input 1*108*41
|
|
|
|
|
self.conv1 = nn.Conv1d(40, 80, kernel_size=(3,),
|
|
|
|
|
stride=(2,), padding=1, bias=False) #1*108*80
|
|
|
|
|
|
|
|
|
|
self.bn1 = nn.BatchNorm1d(80)
|
|
|
|
|
|
|
|
|
|
self.layer1 = self._make_layer(BasicBlock, 80, 2, stride=2)#1*27*80
|
|
|
|
|
self.layer2 = self._make_layer(BasicBlock, 160, 2, stride=2)#1*14*160
|
|
|
|
|
self.layer3 = self._make_layer(BasicBlock, 320, 2, stride=2)#1*7*320
|
|
|
|
|
self.layer4 = self._make_layer(BasicBlock, 640, 2, stride=2)#1*4*640
|
|
|
|
|
# self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
|
|
|
self.linear1 = nn.Linear(640 * BasicBlock.expansion * 4 + 80, 2048)
|
|
|
|
|
self.linear2 = nn.Linear(2048, 1024)
|
|
|
|
|
self.linear3 = nn.Linear(1024, 512)
|
|
|
|
|
self.linear4 = nn.Linear(512, 256)
|
|
|
|
|
self.linear5 = nn.Linear(256, 1)
|
|
|
|
|
|
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
|
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
|
|
|
layers = []
|
|
|
|
|
for stride in strides:
|
|
|
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
|
|
|
self.in_planes = planes * block.expansion
|
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
2021-12-15 12:26:47 +08:00
|
|
|
|
def get_onnx_params(self):
|
|
|
|
|
return {
|
|
|
|
|
'args': (
|
2021-12-15 22:09:18 +08:00
|
|
|
|
torch.tensor(np.zeros([1, 40, 108]), dtype=torch.float32, device='cuda:0'),
|
|
|
|
|
torch.tensor(np.zeros((1, 80)), dtype=torch.float32, device='cuda:0')
|
2021-12-15 12:26:47 +08:00
|
|
|
|
),
|
|
|
|
|
'input_names': ['z_batch','x_batch'],
|
|
|
|
|
'output_names': ['values'],
|
|
|
|
|
'dynamic_axes': {
|
|
|
|
|
'z_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
},
|
|
|
|
|
'x_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-12-12 14:01:40 +08:00
|
|
|
|
out = F.relu(self.bn1(self.conv1(z)))
|
|
|
|
|
out = self.layer1(out)
|
|
|
|
|
out = self.layer2(out)
|
|
|
|
|
out = self.layer3(out)
|
|
|
|
|
out = self.layer4(out)
|
|
|
|
|
out = out.flatten(1,2)
|
|
|
|
|
out = torch.cat([x,out], dim=-1)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
out = F.leaky_relu_(self.linear1(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear2(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear3(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear4(out))
|
2021-12-05 12:03:30 +08:00
|
|
|
|
out = F.leaky_relu_(self.linear5(out))
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=out)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BidModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.dense1 = nn.Linear(208, 512)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.dense2 = nn.Linear(512, 512)
|
|
|
|
|
self.dense3 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense6 = nn.Linear(512, 1)
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, z, x):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
x = self.dense6(x)
|
2021-12-14 22:55:03 +08:00
|
|
|
|
return dict(values=x)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Model dict is only used in evaluation but not training
|
|
|
|
|
model_dict = {}
|
|
|
|
|
model_dict['landlord'] = LandlordLstmModel
|
|
|
|
|
model_dict['landlord_up'] = FarmerLstmModel
|
2021-12-05 12:03:30 +08:00
|
|
|
|
model_dict['landlord_front'] = FarmerLstmModel
|
2021-09-07 16:38:34 +08:00
|
|
|
|
model_dict['landlord_down'] = FarmerLstmModel
|
2021-12-12 14:01:40 +08:00
|
|
|
|
model_dict_legacy = {}
|
|
|
|
|
model_dict_legacy['landlord'] = LandlordLstmModelLegacy
|
|
|
|
|
model_dict_legacy['landlord_up'] = FarmerLstmModelLegacy
|
|
|
|
|
model_dict_legacy['landlord_front'] = FarmerLstmModelLegacy
|
|
|
|
|
model_dict_legacy['landlord_down'] = FarmerLstmModelLegacy
|
|
|
|
|
model_dict_new_legacy = {}
|
|
|
|
|
model_dict_new_legacy['landlord'] = GeneralModelLegacy
|
|
|
|
|
model_dict_new_legacy['landlord_up'] = GeneralModelLegacy
|
|
|
|
|
model_dict_new_legacy['landlord_front'] = GeneralModelLegacy
|
|
|
|
|
model_dict_new_legacy['landlord_down'] = GeneralModelLegacy
|
|
|
|
|
model_dict_new_legacy['bidding'] = BidModel
|
2021-09-07 16:38:34 +08:00
|
|
|
|
model_dict_new = {}
|
|
|
|
|
model_dict_new['landlord'] = GeneralModel
|
|
|
|
|
model_dict_new['landlord_up'] = GeneralModel
|
2021-12-05 12:03:30 +08:00
|
|
|
|
model_dict_new['landlord_front'] = GeneralModel
|
2021-09-07 16:38:34 +08:00
|
|
|
|
model_dict_new['landlord_down'] = GeneralModel
|
|
|
|
|
model_dict_new['bidding'] = BidModel
|
|
|
|
|
model_dict_lstm = {}
|
|
|
|
|
model_dict_lstm['landlord'] = GeneralModel
|
|
|
|
|
model_dict_lstm['landlord_up'] = GeneralModel
|
2021-12-05 12:03:30 +08:00
|
|
|
|
model_dict_lstm['landlord_front'] = GeneralModel
|
2021-09-07 16:38:34 +08:00
|
|
|
|
model_dict_lstm['landlord_down'] = GeneralModel
|
|
|
|
|
|
|
|
|
|
class General_Model:
|
|
|
|
|
"""
|
|
|
|
|
The wrapper for the three models. We also wrap several
|
|
|
|
|
interfaces such as share_memory, eval, etc.
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self, device=0):
|
|
|
|
|
self.models = {}
|
|
|
|
|
if not device == "cpu":
|
|
|
|
|
device = 'cuda:' + str(device)
|
|
|
|
|
# model = GeneralModel().to(torch.device(device))
|
|
|
|
|
self.models['landlord'] = GeneralModel1().to(torch.device(device))
|
|
|
|
|
self.models['landlord_up'] = GeneralModel1().to(torch.device(device))
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.models['landlord_front'] = GeneralModel1().to(torch.device(device))
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models['landlord_down'] = GeneralModel1().to(torch.device(device))
|
|
|
|
|
self.models['bidding'] = BidModel().to(torch.device(device))
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, position, z, x, return_value=False, flags=None, debug=False):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
model = self.models[position]
|
2021-12-14 22:55:03 +08:00
|
|
|
|
values = model.forward(z, x)['values']
|
|
|
|
|
if return_value:
|
|
|
|
|
return dict(values=values)
|
|
|
|
|
else:
|
|
|
|
|
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
|
|
|
|
action = torch.randint(values.shape[0], (1,))[0]
|
|
|
|
|
else:
|
|
|
|
|
action = torch.argmax(values,dim=0)[0]
|
2021-12-15 15:29:29 +08:00
|
|
|
|
return dict(action=action)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
def share_memory(self):
|
|
|
|
|
self.models['landlord'].share_memory()
|
|
|
|
|
self.models['landlord_up'].share_memory()
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.models['landlord_front'].share_memory()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models['landlord_down'].share_memory()
|
|
|
|
|
self.models['bidding'].share_memory()
|
|
|
|
|
|
|
|
|
|
def eval(self):
|
|
|
|
|
self.models['landlord'].eval()
|
|
|
|
|
self.models['landlord_up'].eval()
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.models['landlord_front'].eval()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models['landlord_down'].eval()
|
|
|
|
|
self.models['bidding'].eval()
|
|
|
|
|
|
|
|
|
|
def parameters(self, position):
|
|
|
|
|
return self.models[position].parameters()
|
|
|
|
|
|
|
|
|
|
def get_model(self, position):
|
|
|
|
|
return self.models[position]
|
|
|
|
|
|
|
|
|
|
def get_models(self):
|
|
|
|
|
return self.models
|
|
|
|
|
|
|
|
|
|
class OldModel:
|
|
|
|
|
"""
|
|
|
|
|
The wrapper for the three models. We also wrap several
|
|
|
|
|
interfaces such as share_memory, eval, etc.
|
|
|
|
|
"""
|
2021-12-15 22:09:18 +08:00
|
|
|
|
def __init__(self, device=0, flags=None):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models = {}
|
|
|
|
|
if not device == "cpu":
|
|
|
|
|
device = 'cuda:' + str(device)
|
|
|
|
|
self.models['landlord'] = LandlordLstmModel().to(torch.device(device))
|
|
|
|
|
self.models['landlord_up'] = FarmerLstmModel().to(torch.device(device))
|
2021-12-05 12:03:30 +08:00
|
|
|
|
self.models['landlord_front'] = FarmerLstmModel().to(torch.device(device))
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models['landlord_down'] = FarmerLstmModel().to(torch.device(device))
|
2021-12-10 16:12:50 +08:00
|
|
|
|
self.models['bidding'] = BidModel().to(torch.device(device))
|
2021-12-15 12:26:47 +08:00
|
|
|
|
self.onnx_models = {
|
|
|
|
|
'landlord': None,
|
|
|
|
|
'landlord_up': None,
|
|
|
|
|
'landlord_front': None,
|
|
|
|
|
'landlord_down': None,
|
|
|
|
|
'bidding': None
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def set_onnx_model(self, position, model_path):
|
|
|
|
|
self.onnx_models[position] = onnxruntime.InferenceSession(get_example(model_path))
|
|
|
|
|
|
|
|
|
|
def get_onnx_params(self, position):
|
|
|
|
|
self.models[position].get_onnx_params()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, position, z, x, return_value=False, flags=None):
|
2021-12-15 12:26:47 +08:00
|
|
|
|
model = self.onnx_models[position]
|
|
|
|
|
if model is None:
|
|
|
|
|
model = self.models[position]
|
|
|
|
|
values = model.forward(z, x)['values']
|
|
|
|
|
else:
|
|
|
|
|
onnx_out = model.run(None, {'z_batch': to_numpy(z), 'x_batch': to_numpy(x)})
|
|
|
|
|
values = torch.tensor(onnx_out[0])
|
2021-12-14 22:55:03 +08:00
|
|
|
|
if return_value:
|
|
|
|
|
return dict(values=values)
|
|
|
|
|
else:
|
|
|
|
|
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
|
|
|
|
action = torch.randint(values.shape[0], (1,))[0]
|
|
|
|
|
else:
|
|
|
|
|
action = torch.argmax(values,dim=0)[0]
|
2021-12-15 15:29:29 +08:00
|
|
|
|
return dict(action=action)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
def share_memory(self):
|
2021-12-15 22:09:18 +08:00
|
|
|
|
if self.models['landlord'] is not None:
|
|
|
|
|
self.models['landlord'].share_memory()
|
|
|
|
|
self.models['landlord_up'].share_memory()
|
|
|
|
|
self.models['landlord_front'].share_memory()
|
|
|
|
|
self.models['landlord_down'].share_memory()
|
2021-12-10 16:12:50 +08:00
|
|
|
|
self.models['bidding'].share_memory()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
def eval(self):
|
2021-12-15 22:09:18 +08:00
|
|
|
|
if self.models['landlord'] is not None:
|
|
|
|
|
self.models['landlord'].eval()
|
|
|
|
|
self.models['landlord_up'].eval()
|
|
|
|
|
self.models['landlord_front'].eval()
|
|
|
|
|
self.models['landlord_down'].eval()
|
2021-12-10 16:12:50 +08:00
|
|
|
|
self.models['bidding'].eval()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
def parameters(self, position):
|
|
|
|
|
return self.models[position].parameters()
|
|
|
|
|
|
|
|
|
|
def get_model(self, position):
|
|
|
|
|
return self.models[position]
|
|
|
|
|
|
|
|
|
|
def get_models(self):
|
|
|
|
|
return self.models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Model:
|
|
|
|
|
"""
|
|
|
|
|
The wrapper for the three models. We also wrap several
|
|
|
|
|
interfaces such as share_memory, eval, etc.
|
|
|
|
|
"""
|
2021-12-15 22:09:18 +08:00
|
|
|
|
def __init__(self, device=0, flags=None):
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models = {}
|
2021-12-15 22:09:18 +08:00
|
|
|
|
self.onnx_models = {}
|
|
|
|
|
self.flags = flags
|
2021-09-07 16:38:34 +08:00
|
|
|
|
if not device == "cpu":
|
|
|
|
|
device = 'cuda:' + str(device)
|
|
|
|
|
# model = GeneralModel().to(torch.device(device))
|
2021-12-15 22:09:18 +08:00
|
|
|
|
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
|
|
|
|
if flags is not None and flags.enable_onnx:
|
|
|
|
|
self.models['bidding'] = BidModel().to(torch.device(device))
|
|
|
|
|
for position in positions:
|
|
|
|
|
self.models[position] = None
|
|
|
|
|
else:
|
|
|
|
|
for position in positions:
|
|
|
|
|
self.models[position] = GeneralModel().to(torch.device(device))
|
|
|
|
|
self.models['bidding'] = BidModel().to(torch.device(device))
|
|
|
|
|
self.onnx_models = {
|
|
|
|
|
'landlord': None,
|
|
|
|
|
'landlord_up': None,
|
|
|
|
|
'landlord_front': None,
|
|
|
|
|
'landlord_down': None,
|
|
|
|
|
'bidding': None
|
|
|
|
|
}
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
2021-12-15 22:09:18 +08:00
|
|
|
|
def set_onnx_model(self):
|
|
|
|
|
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
|
|
|
|
for position in positions:
|
|
|
|
|
model_path = os.path.abspath('%s/%s/model_%s.onnx' % (self.flags.savedir, self.flags.xpid, position))
|
|
|
|
|
self.onnx_models[position] = onnxruntime.InferenceSession(get_example(model_path), providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
|
|
|
|
self.onnx_models['bidding'] = None
|
2021-12-14 22:55:03 +08:00
|
|
|
|
|
2021-12-15 12:26:47 +08:00
|
|
|
|
def get_onnx_params(self, position):
|
|
|
|
|
self.models[position].get_onnx_params()
|
|
|
|
|
|
2021-12-14 22:55:03 +08:00
|
|
|
|
def forward(self, position, z, x, return_value=False, flags=None, debug=False):
|
2021-12-15 22:09:18 +08:00
|
|
|
|
if self.flags.enable_onnx and len(self.onnx_models) == 0:
|
|
|
|
|
self.set_onnx_model()
|
2021-12-14 22:55:03 +08:00
|
|
|
|
model = self.onnx_models[position]
|
|
|
|
|
if model is None:
|
|
|
|
|
model = self.models[position]
|
|
|
|
|
values = model.forward(z, x)['values']
|
|
|
|
|
else:
|
2021-12-15 10:03:26 +08:00
|
|
|
|
onnx_out = model.run(None, {'z_batch': to_numpy(z), 'x_batch': to_numpy(x)})
|
2021-12-14 22:55:03 +08:00
|
|
|
|
values = torch.tensor(onnx_out[0])
|
|
|
|
|
if return_value:
|
|
|
|
|
return dict(values=values)
|
|
|
|
|
else:
|
|
|
|
|
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
|
|
|
|
action = torch.randint(values.shape[0], (1,))[0]
|
|
|
|
|
else:
|
|
|
|
|
action = torch.argmax(values,dim=0)[0]
|
2021-12-15 15:29:29 +08:00
|
|
|
|
return dict(action=action)
|
2021-09-07 16:38:34 +08:00
|
|
|
|
|
|
|
|
|
def share_memory(self):
|
2021-12-15 22:09:18 +08:00
|
|
|
|
if self.models['landlord'] is not None:
|
|
|
|
|
self.models['landlord'].share_memory()
|
|
|
|
|
self.models['landlord_up'].share_memory()
|
|
|
|
|
self.models['landlord_front'].share_memory()
|
|
|
|
|
self.models['landlord_down'].share_memory()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models['bidding'].share_memory()
|
|
|
|
|
|
|
|
|
|
def eval(self):
|
2021-12-15 22:09:18 +08:00
|
|
|
|
if self.models['landlord'] is not None:
|
|
|
|
|
self.models['landlord'].eval()
|
|
|
|
|
self.models['landlord_up'].eval()
|
|
|
|
|
self.models['landlord_front'].eval()
|
|
|
|
|
self.models['landlord_down'].eval()
|
2021-09-07 16:38:34 +08:00
|
|
|
|
self.models['bidding'].eval()
|
|
|
|
|
|
|
|
|
|
def parameters(self, position):
|
|
|
|
|
return self.models[position].parameters()
|
|
|
|
|
|
|
|
|
|
def get_model(self, position):
|
|
|
|
|
return self.models[position]
|
|
|
|
|
|
|
|
|
|
def get_models(self):
|
|
|
|
|
return self.models
|
|
|
|
|
|