infer
This commit is contained in:
parent
b40eed2acc
commit
1f24106cf7
|
@ -17,11 +17,15 @@ parser.add_argument('--actor_device_cpu', action='store_true',
|
|||
help='Use CPU as actor device')
|
||||
parser.add_argument('--gpu_devices', default='0', type=str,
|
||||
help='Which GPUs to be used for training')
|
||||
parser.add_argument('--infer_devices', default='0', type=str,
|
||||
help='Which device to be used for infer')
|
||||
parser.add_argument('--num_infer', default=3, type=int,
|
||||
help='The number of process used for infer')
|
||||
parser.add_argument('--num_actor_devices', default=1, type=int,
|
||||
help='The number of devices used for simulation')
|
||||
parser.add_argument('--num_actors', default=2, type=int,
|
||||
parser.add_argument('--num_actors', default=4, type=int,
|
||||
help='The number of actors for each simulation device')
|
||||
parser.add_argument('--num_actors_cpu', default=1, type=int,
|
||||
parser.add_argument('--num_actors_thread', default=6, type=int,
|
||||
help='The number of actors for each simulation device')
|
||||
parser.add_argument('--training_device', default='0', type=str,
|
||||
help='The index of the GPU used for training models. `cpu` means using cpu')
|
||||
|
|
|
@ -14,7 +14,7 @@ import douzero.dmc.models
|
|||
import douzero.env.env
|
||||
from .file_writer import FileWriter
|
||||
from .models import Model, OldModel
|
||||
from .utils import get_batch, log, create_env, create_optimizers, act
|
||||
from .utils import get_batch, log, create_env, create_optimizers, act, infer_logic
|
||||
import psutil
|
||||
import shutil
|
||||
import requests
|
||||
|
@ -25,7 +25,7 @@ def compute_loss(logits, targets):
|
|||
loss = ((logits.squeeze(-1) - targets)**2).mean()
|
||||
return loss
|
||||
|
||||
def learn(position, actor_models, model, batch, optimizer, flags, lock):
|
||||
def learn(position, actor_model, model, batch, optimizer, flags, lock):
|
||||
"""Performs a learning (optimization) step."""
|
||||
position_index = {"landlord": 31, "landlord_up": 32, 'landlord_front': 33, "landlord_down": 34}
|
||||
print("Learn", position)
|
||||
|
@ -60,7 +60,6 @@ def learn(position, actor_models, model, batch, optimizer, flags, lock):
|
|||
optimizer.step()
|
||||
|
||||
if not flags.enable_onnx:
|
||||
for actor_model in actor_models.values():
|
||||
actor_model.get_model(position).load_state_dict(model.state_dict())
|
||||
return stats
|
||||
|
||||
|
@ -85,22 +84,12 @@ def train(flags):
|
|||
T = flags.unroll_length
|
||||
B = flags.batch_size
|
||||
|
||||
if flags.actor_device_cpu:
|
||||
device_iterator = ['cpu']
|
||||
else:
|
||||
device_iterator = range(flags.num_actor_devices) #[0, 'cpu']
|
||||
assert flags.num_actor_devices <= len(flags.gpu_devices.split(',')), 'The number of actor devices can not exceed the number of available devices'
|
||||
|
||||
# Initialize actor models
|
||||
models = {}
|
||||
for device in device_iterator:
|
||||
if flags.old_model:
|
||||
model = OldModel(device="cpu", flags = flags, lite_model = flags.lite_model)
|
||||
actor_model = OldModel(device="cpu", flags = flags, lite_model = flags.lite_model)
|
||||
else:
|
||||
model = Model(device="cpu", flags = flags, lite_model = flags.lite_model)
|
||||
model.share_memory()
|
||||
model.eval()
|
||||
models[device] = model
|
||||
actor_model = Model(device="cpu", flags = flags, lite_model = flags.lite_model)
|
||||
actor_model.eval()
|
||||
|
||||
# Initialize queues
|
||||
actor_processes = []
|
||||
|
@ -114,9 +103,6 @@ def train(flags):
|
|||
else:
|
||||
learner_model = Model(device=flags.training_device, lite_model = flags.lite_model)
|
||||
|
||||
# Create optimizers
|
||||
optimizers = create_optimizers(flags, learner_model)
|
||||
|
||||
# Stat Keys
|
||||
stat_keys = [
|
||||
'mean_episode_return_landlord',
|
||||
|
@ -155,6 +141,9 @@ def train(flags):
|
|||
)
|
||||
onnx_frame.value = frames
|
||||
|
||||
# Create optimizers
|
||||
optimizers = create_optimizers(flags, learner_model)
|
||||
|
||||
# Load models if any
|
||||
if flags.load_model and os.path.exists(checkpointpath):
|
||||
checkpoint_states = torch.load(
|
||||
|
@ -164,8 +153,7 @@ def train(flags):
|
|||
learner_model.get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
||||
optimizers[k].load_state_dict(checkpoint_states["optimizer_state_dict"][k])
|
||||
if not flags.enable_onnx:
|
||||
for device in device_iterator:
|
||||
models[device].get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
||||
actor_model.get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
||||
stats = checkpoint_states["stats"]
|
||||
|
||||
frames = checkpoint_states["frames"]
|
||||
|
@ -173,20 +161,36 @@ def train(flags):
|
|||
sync_onnx_model(frames)
|
||||
log.info(f"Resuming preempted job, current stats:\n{stats}")
|
||||
|
||||
# Starting actor processes
|
||||
for device in device_iterator:
|
||||
if device == 'cpu':
|
||||
num_actors = flags.num_actors_cpu
|
||||
else:
|
||||
infer_queues = []
|
||||
num_actors = flags.num_actors
|
||||
for j in range(flags.num_actors_thread):
|
||||
for i in range(num_actors):
|
||||
infer_queues.append({
|
||||
'input': ctx.Queue(), 'output': ctx.Queue()
|
||||
})
|
||||
|
||||
infer_processes = []
|
||||
for device in flags.infer_devices.split(','):
|
||||
for i in range(flags.num_infer):
|
||||
infer = mp.Process(
|
||||
target=infer_logic,
|
||||
args=(i, device, infer_queues, actor_model, flags, onnx_frame))
|
||||
infer.daemon = True
|
||||
infer.start()
|
||||
infer_processes.append({
|
||||
'device': device,
|
||||
'i': i,
|
||||
'infer': infer
|
||||
})
|
||||
|
||||
# Starting actor processes
|
||||
for i in range(num_actors):
|
||||
actor = mp.Process(
|
||||
target=act,
|
||||
args=(i, device, batch_queues, models[device], flags, onnx_frame))
|
||||
args=(i, infer_queues[i * 4: (i + 1) * 4], batch_queues, actor_model, flags))
|
||||
actor.daemon = True
|
||||
actor.start()
|
||||
actor_processes.append({
|
||||
'device': device,
|
||||
'i': i,
|
||||
'actor': actor
|
||||
})
|
||||
|
@ -201,7 +205,7 @@ def train(flags):
|
|||
nonlocal frames, position_frames, stats
|
||||
while frames < flags.total_frames:
|
||||
batch = get_batch(batch_queues, position, flags, local_lock)
|
||||
_stats = learn(position, models, learner_model.get_model(position), batch,
|
||||
_stats = learn(position, actor_model, learner_model.get_model(position), batch,
|
||||
optimizers[position], flags, position_lock)
|
||||
with lock:
|
||||
for k in _stats:
|
||||
|
@ -215,13 +219,12 @@ def train(flags):
|
|||
|
||||
threads = []
|
||||
locks = {}
|
||||
for device in device_iterator:
|
||||
locks[device] = {'landlord': threading.Lock(), 'landlord_up': threading.Lock(), 'landlord_front': threading.Lock(), 'landlord_down': threading.Lock()}
|
||||
locks['cpu'] = {'landlord': threading.Lock(), 'landlord_up': threading.Lock(), 'landlord_front': threading.Lock(), 'landlord_down': threading.Lock()}
|
||||
|
||||
for i in range(flags.num_threads):
|
||||
for position in ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']:
|
||||
thread = threading.Thread(
|
||||
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,position,locks[device][position],position_locks[position]))
|
||||
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,position, locks['cpu'][position],position_locks[position]))
|
||||
thread.setDaemon(True)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
|
@ -303,14 +306,14 @@ def train(flags):
|
|||
position_fps['landlord_front'],
|
||||
position_fps['landlord_down'],
|
||||
pprint.pformat(stats))
|
||||
for proc in actor_processes:
|
||||
if not proc['actor'].is_alive():
|
||||
actor = mp.Process(
|
||||
target=act,
|
||||
args=(proc['i'], proc['device'], batch_queues, models[device], flags, onnx_frame))
|
||||
actor.daemon = True
|
||||
actor.start()
|
||||
proc['actor'] = actor
|
||||
# for proc in actor_processes:
|
||||
# if not proc['actor'].is_alive():
|
||||
# actor = mp.Process(
|
||||
# target=act,
|
||||
# args=(proc['i'], proc['device'], batch_queues, models[device], flags, onnx_frame))
|
||||
# actor.daemon = True
|
||||
# actor.start()
|
||||
# proc['actor'] = actor
|
||||
|
||||
except KeyboardInterrupt:
|
||||
flags.enable_upload = False
|
||||
|
|
|
@ -6,21 +6,14 @@ the environment, we do it automatically.
|
|||
import numpy as np
|
||||
import torch
|
||||
|
||||
def _format_observation(obs, device, flags):
|
||||
def _format_observation(obs):
|
||||
"""
|
||||
A utility function to process observations and
|
||||
move them to CUDA.
|
||||
"""
|
||||
position = obs['position']
|
||||
if flags.enable_onnx:
|
||||
x_batch = obs['x_batch']
|
||||
z_batch = obs['z_batch']
|
||||
else:
|
||||
if not device == "cpu":
|
||||
device = 'cuda:' + str(device)
|
||||
device = torch.device(device)
|
||||
x_batch = torch.from_numpy(obs['x_batch']).to(device)
|
||||
z_batch = torch.from_numpy(obs['z_batch']).to(device)
|
||||
x_no_action = torch.from_numpy(obs['x_no_action'])
|
||||
z = torch.from_numpy(obs['z'])
|
||||
obs = {'x_batch': x_batch,
|
||||
|
@ -39,7 +32,7 @@ class Environment:
|
|||
|
||||
def initial(self, model, device, flags=None):
|
||||
obs = self.env.reset(model, device, flags=flags)
|
||||
initial_position, initial_obs, x_no_action, z = _format_observation(obs, self.device, flags)
|
||||
initial_position, initial_obs, x_no_action, z = _format_observation(obs)
|
||||
self.episode_return = torch.zeros(1, 1)
|
||||
initial_done = torch.ones(1, 1, dtype=torch.bool)
|
||||
return initial_position, initial_obs, dict(
|
||||
|
@ -58,7 +51,7 @@ class Environment:
|
|||
obs = self.env.reset(model, device, flags=flags)
|
||||
self.episode_return = torch.zeros(1, 1)
|
||||
|
||||
position, obs, x_no_action, z = _format_observation(obs, self.device, flags)
|
||||
position, obs, x_no_action, z = _format_observation(obs)
|
||||
# reward = torch.tensor(reward).view(1, 1)
|
||||
done = torch.tensor(done).view(1, 1)
|
||||
|
||||
|
|
|
@ -1,4 +1,6 @@
|
|||
import os
|
||||
import queue
|
||||
import threading
|
||||
import typing
|
||||
import logging
|
||||
import traceback
|
||||
|
@ -111,16 +113,42 @@ def create_optimizers(flags, learner_model):
|
|||
return optimizers
|
||||
|
||||
|
||||
def act(i, device, batch_queues, model, flags, onnx_frame):
|
||||
def infer_logic(i, device, infer_queues, model, flags, onnx_frame):
|
||||
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
||||
if not flags.enable_onnx:
|
||||
for pos in positions:
|
||||
model.models[pos].to(torch.device(device if device == "cpu" else ("cuda:"+str(device))))
|
||||
last_onnx_frame = -1
|
||||
log.info('Infer %i started.', i)
|
||||
|
||||
while True:
|
||||
# print("posi", position)
|
||||
if flags.enable_onnx and onnx_frame.value != last_onnx_frame:
|
||||
last_onnx_frame = onnx_frame.value
|
||||
model.set_onnx_model(device)
|
||||
all_empty = True
|
||||
for infer_queue in infer_queues:
|
||||
try:
|
||||
task = infer_queue['input'].get_nowait()
|
||||
with torch.no_grad():
|
||||
result = model.forward(task['position'], task['z_batch'], task['x_batch'], return_value=True, flags=flags)
|
||||
infer_queue['output'].put({
|
||||
'values': result['values']
|
||||
})
|
||||
all_empty = False
|
||||
except queue.Empty:
|
||||
pass
|
||||
if all_empty:
|
||||
time.sleep(0.01)
|
||||
|
||||
def act_queue(i, infer_queue, batch_queues, actor_model, flags):
|
||||
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
||||
try:
|
||||
T = flags.unroll_length
|
||||
log.info('Device %s Actor %i started.', str(device), i)
|
||||
log.info('Actor %i started.', i)
|
||||
|
||||
env = create_env(flags)
|
||||
device = 'cpu'
|
||||
env = Environment(env, device)
|
||||
|
||||
done_buf = {p: [] for p in positions}
|
||||
|
@ -136,19 +164,18 @@ def act(i, device, batch_queues, model, flags, onnx_frame):
|
|||
|
||||
position_index = {"landlord": 31, "landlord_up": 32, "landlord_front": 33, "landlord_down": 34}
|
||||
|
||||
position, obs, env_output = env.initial(model, device, flags=flags)
|
||||
last_onnx_frame = -1
|
||||
position, obs, env_output = env.initial(actor_model, device, flags=flags)
|
||||
while True:
|
||||
# print("posi", position)
|
||||
if flags.enable_onnx and onnx_frame.value != last_onnx_frame:
|
||||
last_onnx_frame = onnx_frame.value
|
||||
model.set_onnx_model(device)
|
||||
|
||||
while True:
|
||||
if len(obs['legal_actions']) > 1:
|
||||
with torch.no_grad():
|
||||
agent_output = model.forward(position, obs['z_batch'], obs['x_batch'], flags=flags)
|
||||
_action_idx = int(agent_output['action'])
|
||||
infer_queue['input'].put({
|
||||
'position': position,
|
||||
'z_batch': obs['z_batch'],
|
||||
'x_batch': obs['x_batch']
|
||||
})
|
||||
result = infer_queue['output'].get()
|
||||
action = np.argmax(result['values'], axis=0)[0]
|
||||
_action_idx = int(action)
|
||||
action = obs['legal_actions'][_action_idx]
|
||||
else:
|
||||
action = obs['legal_actions'][0]
|
||||
|
@ -162,7 +189,7 @@ def act(i, device, batch_queues, model, flags, onnx_frame):
|
|||
x_batch = env_output['obs_x_no_action'].float()
|
||||
obs_x_batch_buf[position].append(x_batch)
|
||||
type_buf[position].append(position_index[position])
|
||||
position, obs, env_output = env.step(action, model, device, flags=flags)
|
||||
position, obs, env_output = env.step(action, actor_model, device, flags=flags)
|
||||
size[position] += 1
|
||||
if env_output['done']:
|
||||
for p in positions:
|
||||
|
@ -216,6 +243,18 @@ def act(i, device, batch_queues, model, flags, onnx_frame):
|
|||
print()
|
||||
raise e
|
||||
|
||||
def act(i, infer_queues, batch_queues, actor_model, flags):
|
||||
threads = []
|
||||
for x in range(len(infer_queues)):
|
||||
thread = threading.Thread(
|
||||
target=act_queue, name='act_queue-%d-%d' % (i, x),
|
||||
args=(x, infer_queues[x], batch_queues, actor_model, flags))
|
||||
thread.setDaemon(True)
|
||||
thread.start()
|
||||
threads.append(thread)
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
def _cards2tensor(list_cards, compress_form = False):
|
||||
"""
|
||||
Convert a list of integers to the tensor
|
||||
|
|
Loading…
Reference in New Issue