调整晋升要求,添加评估接口

This commit is contained in:
ZaneYork 2021-12-26 20:11:05 +08:00
parent c4c008d034
commit 7b21149add
5 changed files with 295 additions and 23 deletions

View File

@ -12,9 +12,6 @@ from onnxruntime.datasets import get_example
from torch import nn
import torch.nn.functional as F
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
class LandlordLstmModel(nn.Module):
def __init__(self):
super().__init__()

View File

@ -6,7 +6,7 @@ from onnxruntime.datasets import get_example
from douzero.env.env import get_obs
def _load_model(position, model_path, model_type, use_legacy, use_lite):
def _load_model(position, model_path, model_type, use_legacy, use_lite, use_onnx=False):
from douzero.dmc.models import model_dict_new, model_dict_new_lite, model_dict, model_dict_legacy, model_dict_lite
model = None
if model_type == "general":
@ -34,9 +34,9 @@ def _load_model(position, model_path, model_type, use_legacy, use_lite):
if torch.cuda.is_available():
model.cuda()
model.eval()
onnx_params = model.get_onnx_params(torch.device('cpu'))
model_path = model_path + '.onnx'
if not os.path.exists(model_path):
if use_onnx and not os.path.exists(model_path):
onnx_params = model.get_onnx_params(torch.device('cpu'))
torch.onnx.export(
model,
onnx_params['args'],
@ -53,28 +53,42 @@ def _load_model(position, model_path, model_type, use_legacy, use_lite):
class DeepAgent:
def __init__(self, position, model_path):
def __init__(self, position, model_path, use_onnx=False):
self.use_legacy = True if "legacy" in model_path else False
self.lite_model = True if "lite" in model_path else False
self.model_type = "general" if "resnet" in model_path else "old"
self.model = _load_model(position, model_path, self.model_type, self.use_legacy, self.lite_model)
self.onnx_model = onnxruntime.InferenceSession(get_example(os.path.abspath(model_path + '.onnx')), providers=['CPUExecutionProvider'])
self.model = _load_model(position, model_path, self.model_type, self.use_legacy, self.lite_model, use_onnx=use_onnx)
if use_onnx:
self.onnx_model = onnxruntime.InferenceSession(get_example(os.path.abspath(model_path + '.onnx')), providers=['CPUExecutionProvider'])
else:
self.onnx_model = None
self.EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
def act(self, infoset):
if len(infoset.legal_actions) == 1:
def act(self, infoset, with_confidence = False):
if not with_confidence and len(infoset.legal_actions) == 1:
return infoset.legal_actions[0]
obs = get_obs(infoset, self.model_type == "general", self.use_legacy, self.lite_model)
# z_batch = torch.from_numpy(obs['z_batch']).float()
# x_batch = torch.from_numpy(obs['x_batch']).float()
# if torch.cuda.is_available():
# z_batch, x_batch = z_batch.cuda(), x_batch.cuda()
# y_pred = self.model.forward(z_batch, x_batch)['values']
# y_pred = y_pred.detach().cpu().numpy()
y_pred = self.onnx_model.run(None, {'z_batch': obs['z_batch'], 'x_batch': obs['x_batch']})[0]
if self.onnx_model is None:
z_batch = torch.from_numpy(obs['z_batch']).float()
x_batch = torch.from_numpy(obs['x_batch']).float()
if torch.cuda.is_available():
z_batch, x_batch = z_batch.cuda(), x_batch.cuda()
y_pred = self.model.forward(z_batch, x_batch)['values']
y_pred = y_pred.detach().cpu().numpy()
else:
y_pred = self.onnx_model.run(None, {'z_batch': obs['z_batch'], 'x_batch': obs['x_batch']})[0]
if with_confidence:
y_pred = y_pred.flatten()
size = min(3, len(y_pred))
best_action_index = np.argpartition(y_pred, -size)[-size:]
best_action_confidence = y_pred[best_action_index]
best_action = [infoset.legal_actions[index] for index in best_action_index]
return best_action, best_action_confidence
best_action_index = np.argmax(y_pred, axis=0)[0]
best_action = infoset.legal_actions[best_action_index]

View File

@ -19,7 +19,7 @@ def load_card_play_models(card_play_model_path_dict):
players[position] = RandomAgent()
else:
from .deep_agent import DeepAgent
players[position] = DeepAgent(position, card_play_model_path_dict[position])
players[position] = DeepAgent(position, card_play_model_path_dict[position], use_onnx=True)
return players
def mp_simulate(card_play_data_list, card_play_model_path_dict, q, output, title):

View File

@ -45,16 +45,16 @@ def battle_logic(baseline : Baseline, battle : Battle):
challenge_success = False
if battle.challenger_position == 'landlord':
if baseline.landlord_wp == 0 or landlord_wp / float(baseline.landlord_wp) > 1.2:
if baseline.landlord_wp == 0 or landlord_wp / float(baseline.landlord_wp) > 1.15:
landlord_wp, farmer_wp, landlord_adp, farmer_adp = \
_second_eval(landlord_wp, farmer_wp, landlord_adp, farmer_adp)
if baseline.landlord_wp == 0 or landlord_wp / float(baseline.landlord_wp) > 1.2:
if baseline.landlord_wp == 0 or landlord_wp / float(baseline.landlord_wp) > 1.15:
challenge_success = True
else:
if baseline.farmer_wp == 0 or farmer_wp / float(baseline.farmer_wp) > 1.2:
if baseline.farmer_wp == 0 or farmer_wp / float(baseline.farmer_wp) > 1.05:
landlord_wp, farmer_wp, landlord_adp, farmer_adp = \
_second_eval(landlord_wp, farmer_wp, landlord_adp, farmer_adp)
if baseline.farmer_wp == 0 or farmer_wp / float(baseline.farmer_wp) > 1.2:
if baseline.farmer_wp == 0 or farmer_wp / float(baseline.farmer_wp) > 1.05:
challenge_success = True
if challenge_success:
challenger_baseline['rank'] = baseline.rank + 1

View File

@ -1,3 +1,5 @@
import itertools
from douzero.server.orm import Model, Battle, Baseline
from douzero.server.battle import tick
from flask import Flask, jsonify, request
@ -5,6 +7,10 @@ from flask_cors import CORS
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from douzero.env.move_generator import MovesGener
from douzero.env import move_detector as md, move_selector as ms
from douzero.evaluation.deep_agent import DeepAgent
app = Flask(__name__)
CORS(app)
@ -12,9 +18,29 @@ Model.create_table()
Battle.create_table()
Baseline.create_table()
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
idx_position = {0: 'landlord', 1: 'landlord_down', 2: 'landlord_front', 3:'landlord_up'}
threadpool = ThreadPoolExecutor(1)
EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
RealCard2EnvCard = {'3': 3, '4': 4, '5': 5, '6': 6, '7': 7,
'8': 8, '9': 9, 'T': 10, 'J': 11, 'Q': 12,
'K': 13, 'A': 14, '2': 17, 'X': 20, 'D': 30}
baselines = Baseline.select().order_by(Baseline.rank.desc()).limit(1)
if len(baselines) >= 1:
baseline = baselines[0]
players = [
DeepAgent('landlord', str(baseline.landlord_path), use_onnx=True),
DeepAgent('landlord_down', str(baseline.landlord_down_path), use_onnx=True),
DeepAgent('landlord_front', str(baseline.landlord_front_path), use_onnx=True),
DeepAgent('landlord_up', str(baseline.landlord_up_path), use_onnx=True)
]
@app.route('/upload', methods=['POST'])
def upload():
type = request.form.get('type')
@ -71,6 +97,241 @@ def metrics():
metrics[baseline.rank] = baseline_metric
return jsonify({'status': 0, 'message': 'success', 'result': metrics})
@app.route('/predict', methods=['POST'])
def predict():
if request.method == 'POST':
try:
# Player postion
player_position = request.form.get('player_position')
if player_position not in ['0', '1', '2', '3']:
return jsonify({'status': 1, 'message': 'player_position must be 0, 1, 2 or 3'})
player_position = int(player_position)
# Player hand cards
player_hand_cards = [RealCard2EnvCard[c] for c in request.form.get('player_hand_cards')]
if player_position == 0:
if len(player_hand_cards) < 1 or len(player_hand_cards) > 33:
return jsonify({'status': 2, 'message': 'the number of hand cards should be 1-33'})
else:
if len(player_hand_cards) < 1 or len(player_hand_cards) > 25:
return jsonify({'status': 3, 'message': 'the number of hand cards should be 1-25'})
# Number cards left
num_cards_left = [
int(request.form.get('num_cards_left_landlord')),
int(request.form.get('num_cards_left_landlord_down')),
int(request.form.get('num_cards_left_landlord_front')),
int(request.form.get('num_cards_left_landlord_up'))
]
if num_cards_left[player_position] != len(player_hand_cards):
return jsonify({'status': 4, 'message': 'the number of cards left do not align with hand cards'})
if num_cards_left[0] < 0 or num_cards_left[1] < 0 or num_cards_left[2] < 0 or num_cards_left[3] < 0 \
or num_cards_left[0] > 33 or num_cards_left[1] > 25 or num_cards_left[2] > 25 or num_cards_left[2] > 25:
return jsonify({'status': 5, 'message': 'the number of cards left not in range'})
# Card play sequence
if request.form.get('card_play_action_seq') == '':
card_play_action_seq = []
else:
card_play_action_seq = [['', [RealCard2EnvCard[c] for c in cards]] for cards in request.form.get('card_play_action_seq').split(',')]
# Other hand cards
other_hand_cards = [RealCard2EnvCard[c] for c in request.form.get('other_hand_cards')]
if len(other_hand_cards) != sum(num_cards_left) - num_cards_left[player_position]:
return jsonify({'status': 7, 'message': 'the number of the other hand cards do not align with the number of cards left'})
# Last moves
last_moves = []
for field in ['last_move_landlord', 'last_move_landlord_down', 'last_move_landlord_front', 'last_move_landlord_up']:
last_moves.append([RealCard2EnvCard[c] for c in request.form.get(field)])
# Played cards
played_cards = {}
for idx, field in enumerate(['played_cards_landlord', 'played_cards_landlord_down', 'played_cards_landlord_front', 'played_cards_landlord_up']):
played_cards[idx_position[idx]] = [RealCard2EnvCard[c] for c in request.form.get(field)]
# Bomb Num
bomb_num = request.form.get('bomb_num')
# InfoSet
info_set = InfoSet()
info_set.player_position = idx_position[player_position]
info_set.player_hand_cards = player_hand_cards
info_set.num_cards_left = num_cards_left
info_set.card_play_action_seq = card_play_action_seq
info_set.other_hand_cards = other_hand_cards
info_set.last_moves = last_moves
info_set.played_cards = played_cards
info_set.bomb_num = [int(x) for x in str.split(bomb_num, ',')]
info_set.num_cards_left_dict['landlord'] = num_cards_left[0]
info_set.num_cards_left_dict['landlord_down'] = num_cards_left[1]
info_set.num_cards_left_dict['landlord_front'] = num_cards_left[2]
info_set.num_cards_left_dict['landlord_up'] = num_cards_left[3]
# Get rival move and legal_actions
rival_move = []
if len(card_play_action_seq) != 0:
if len(card_play_action_seq[-1][1]) == 0:
if len(card_play_action_seq[-2][1]) == 0:
rival_move = card_play_action_seq[-3][1]
else:
rival_move = card_play_action_seq[-2][1]
else:
rival_move = card_play_action_seq[-1][1]
info_set.rival_move = rival_move
info_set.legal_actions = _get_legal_card_play_actions(player_hand_cards, rival_move)
# Prediction
actions, actions_confidence = players[player_position].act(info_set, True)
actions = [''.join([EnvCard2RealCard[a] for a in action]) for action in actions]
result = {}
win_rates = {}
for i in range(len(actions)):
# Here, we calculate the win rate
win_rate = max(actions_confidence[i], -1)
win_rate = min(win_rate, 1)
win_rates[actions[i]] = str(round((win_rate + 1) / 2, 4))
result[actions[i]] = str(round(actions_confidence[i], 6))
############## DEBUG ################
if app.debug:
print('--------------- DEBUG START --------------')
command = 'curl --data "'
parameters = []
for key in request.form:
parameters.append(key+'='+request.form.get(key))
print(key+':', request.form.get(key))
command += '&'.join(parameters)
command += '" "http://127.0.0.1:5000/predict"'
print('Command:', command)
print('Rival Move:', rival_move)
print('legal_actions:', info_set.legal_actions)
print('Result:', result)
print('--------------- DEBUG END --------------')
############## DEBUG ################
return jsonify({'status': 0, 'message': 'success', 'result': result, 'win_rates': win_rates})
except:
import traceback
traceback.print_exc()
return jsonify({'status': -1, 'message': 'unkown error'})
@app.route('/legal', methods=['POST'])
def legal():
if request.method == 'POST':
try:
player_hand_cards = [RealCard2EnvCard[c] for c in request.form.get('player_hand_cards')]
rival_move = [RealCard2EnvCard[c] for c in request.form.get('rival_move')]
legal_actions = _get_legal_card_play_actions(player_hand_cards, rival_move)
legal_actions = ','.join([''.join([EnvCard2RealCard[a] for a in action]) for action in legal_actions])
return jsonify({'status': 0, 'message': 'success', 'legal_action': legal_actions})
except:
import traceback
traceback.print_exc()
return jsonify({'status': -1, 'message': 'unkown error'})
class InfoSet(object):
def __init__(self):
self.player_position = None
self.player_hand_cards = None
self.num_cards_left = None
self.num_cards_left_dict = {}
self.all_handcards = {}
# self.three_landlord_cards = None
self.card_play_action_seq = None
self.other_hand_cards = None
self.legal_actions = None
self.rival_move = None
self.last_moves = None
self.played_cards = None
self.bomb_num = None
def _get_legal_card_play_actions(player_hand_cards, rival_move):
mg = MovesGener(player_hand_cards)
rival_type = md.get_move_type(rival_move)
rival_move_type = rival_type['type']
rival_move_len = rival_type.get('len', 1)
moves = list()
if rival_move_type == md.TYPE_0_PASS:
moves = mg.gen_moves()
elif rival_move_type == md.TYPE_1_SINGLE:
all_moves = mg.gen_type_1_single()
moves = ms.filter_type_1_single(all_moves, rival_move)
elif rival_move_type == md.TYPE_2_PAIR:
all_moves = mg.gen_type_2_pair()
moves = ms.filter_type_2_pair(all_moves, rival_move)
elif rival_move_type == md.TYPE_3_TRIPLE:
all_moves = mg.gen_type_3_triple()
moves = ms.filter_type_3_triple(all_moves, rival_move)
elif rival_move_type == md.TYPE_4_BOMB:
all_moves = mg.gen_type_4_bomb(4)
moves = ms.filter_type_4_bomb(all_moves, rival_move)
moves += mg.gen_type_4_bomb(5) + mg.gen_type_4_bomb(6) + mg.gen_type_4_bomb(7) + mg.gen_type_4_bomb(8) + mg.gen_type_5_king_bomb()
elif rival_move_type == md.TYPE_4_BOMB5:
all_moves = mg.gen_type_4_bomb(5)
moves = ms.filter_type_4_bomb(all_moves, rival_move)
moves += mg.gen_type_4_bomb(6) + mg.gen_type_4_bomb(7) + mg.gen_type_4_bomb(8) + mg.gen_type_5_king_bomb()
elif rival_move_type == md.TYPE_4_BOMB6:
all_moves = mg.gen_type_4_bomb(6)
moves = ms.filter_type_4_bomb(all_moves, rival_move)
moves += mg.gen_type_4_bomb(7) + mg.gen_type_4_bomb(8) + mg.gen_type_5_king_bomb()
elif rival_move_type == md.TYPE_4_BOMB7:
all_moves = mg.gen_type_4_bomb(7)
moves = ms.filter_type_4_bomb(all_moves, rival_move)
moves += mg.gen_type_4_bomb(8) + mg.gen_type_5_king_bomb()
elif rival_move_type == md.TYPE_4_BOMB8:
all_moves = mg.gen_type_4_bomb(8)
moves = ms.filter_type_4_bomb(all_moves, rival_move)
moves += mg.gen_type_5_king_bomb()
elif rival_move_type == md.TYPE_5_KING_BOMB:
moves = []
elif rival_move_type == md.TYPE_7_3_2:
all_moves = mg.gen_type_7_3_2()
moves = ms.filter_type_7_3_2(all_moves, rival_move)
elif rival_move_type == md.TYPE_8_SERIAL_SINGLE:
all_moves = mg.gen_type_8_serial_single(repeat_num=rival_move_len)
moves = ms.filter_type_8_serial_single(all_moves, rival_move)
elif rival_move_type == md.TYPE_9_SERIAL_PAIR:
all_moves = mg.gen_type_9_serial_pair(repeat_num=rival_move_len)
moves = ms.filter_type_9_serial_pair(all_moves, rival_move)
elif rival_move_type == md.TYPE_10_SERIAL_TRIPLE:
all_moves = mg.gen_type_10_serial_triple(repeat_num=rival_move_len)
moves = ms.filter_type_10_serial_triple(all_moves, rival_move)
elif rival_move_type == md.TYPE_12_SERIAL_3_2:
all_moves = mg.gen_type_12_serial_3_2(repeat_num=rival_move_len)
moves = ms.filter_type_12_serial_3_2(all_moves, rival_move)
if rival_move_type != md.TYPE_0_PASS and rival_move_type < md.TYPE_4_BOMB:
moves = moves + mg.gen_type_4_bomb(4) + mg.gen_type_4_bomb(5) + mg.gen_type_4_bomb(6) + mg.gen_type_4_bomb(7) + mg.gen_type_4_bomb(8) + mg.gen_type_5_king_bomb()
if len(rival_move) != 0: # rival_move is not 'pass'
moves = moves + [[]]
for m in moves:
m.sort()
moves.sort()
moves = list(move for move,_ in itertools.groupby(moves))
return moves
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='DouZero evaluation backend')