调整评估模型加载逻辑
This commit is contained in:
parent
29866e5dbf
commit
9bdcc85cc7
|
@ -23,16 +23,11 @@ def _load_model(position, model_path, model_type, use_legacy, use_lite, use_onnx
|
|||
else:
|
||||
model = model_dict[position]()
|
||||
model_state_dict = model.state_dict()
|
||||
if torch.cuda.is_available():
|
||||
pretrained = torch.load(model_path, map_location='cuda:0')
|
||||
else:
|
||||
pretrained = torch.load(model_path, map_location='cpu')
|
||||
pretrained = torch.load(model_path, map_location='cpu')
|
||||
pretrained = {k: v for k, v in pretrained.items() if k in model_state_dict}
|
||||
model_state_dict.update(pretrained)
|
||||
model.load_state_dict(model_state_dict)
|
||||
# torch.save(model.state_dict(), model_path.replace(".ckpt", "_nobn.ckpt"))
|
||||
if torch.cuda.is_available():
|
||||
model.cuda()
|
||||
model.eval()
|
||||
model_path = model_path + '.onnx'
|
||||
if use_onnx and not os.path.exists(model_path):
|
||||
|
@ -58,14 +53,19 @@ class DeepAgent:
|
|||
self.lite_model = True if "lite" in model_path else False
|
||||
self.model_type = "general" if "resnet" in model_path else "old"
|
||||
self.model = _load_model(position, model_path, self.model_type, self.use_legacy, self.lite_model, use_onnx=use_onnx)
|
||||
if use_onnx:
|
||||
self.onnx_model = onnxruntime.InferenceSession(get_example(os.path.abspath(model_path + '.onnx')), providers=['CPUExecutionProvider'])
|
||||
else:
|
||||
self.onnx_model = None
|
||||
self.onnx_model_path = os.path.abspath(model_path + '.onnx')
|
||||
self.use_onnx = use_onnx
|
||||
self.onnx_model = None
|
||||
self.EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
|
||||
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
|
||||
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
|
||||
def act(self, infoset, with_confidence = False):
|
||||
if self.use_onnx and self.onnx_model is None:
|
||||
if torch.cuda.is_available():
|
||||
self.onnx_model = onnxruntime.InferenceSession(get_example(self.onnx_model_path), providers=['CPUExecutionProvider'])
|
||||
else:
|
||||
self.onnx_model = onnxruntime.InferenceSession(get_example(self.onnx_model_path), providers=['CUDAExecutionProvider'])
|
||||
|
||||
if not with_confidence and len(infoset.legal_actions) == 1:
|
||||
return infoset.legal_actions[0]
|
||||
|
||||
|
|
|
@ -22,8 +22,7 @@ def load_card_play_models(card_play_model_path_dict):
|
|||
players[position] = DeepAgent(position, card_play_model_path_dict[position], use_onnx=True)
|
||||
return players
|
||||
|
||||
def mp_simulate(card_play_data_list, card_play_model_path_dict, q, output, title):
|
||||
players = load_card_play_models(card_play_model_path_dict)
|
||||
def mp_simulate(card_play_data_list, players, q, output, title):
|
||||
EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
|
||||
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
|
||||
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
|
||||
|
@ -97,11 +96,14 @@ def evaluate(landlord, landlord_up, landlord_front, landlord_down, eval_data, nu
|
|||
ctx = mp.get_context('spawn')
|
||||
q = ctx.SimpleQueue()
|
||||
processes = []
|
||||
|
||||
players = load_card_play_models(card_play_model_path_dict)
|
||||
|
||||
for card_paly_data in card_play_data_list_each_worker:
|
||||
|
||||
p = ctx.Process(
|
||||
target=mp_simulate,
|
||||
args=(card_paly_data, card_play_model_path_dict, q, output, title))
|
||||
args=(card_paly_data, players, q, output, title))
|
||||
p.start()
|
||||
|
||||
processes.append(p)
|
||||
|
|
Loading…
Reference in New Issue