独立infer进程
This commit is contained in:
parent
b40eed2acc
commit
d8b5bb71e6
|
@ -17,6 +17,8 @@ parser.add_argument('--actor_device_cpu', action='store_true',
|
||||||
help='Use CPU as actor device')
|
help='Use CPU as actor device')
|
||||||
parser.add_argument('--gpu_devices', default='0', type=str,
|
parser.add_argument('--gpu_devices', default='0', type=str,
|
||||||
help='Which GPUs to be used for training')
|
help='Which GPUs to be used for training')
|
||||||
|
parser.add_argument('--num_infer', default=2, type=int,
|
||||||
|
help='The number of process used for infer')
|
||||||
parser.add_argument('--num_actor_devices', default=1, type=int,
|
parser.add_argument('--num_actor_devices', default=1, type=int,
|
||||||
help='The number of devices used for simulation')
|
help='The number of devices used for simulation')
|
||||||
parser.add_argument('--num_actors', default=2, type=int,
|
parser.add_argument('--num_actors', default=2, type=int,
|
||||||
|
|
|
@ -14,7 +14,7 @@ import douzero.dmc.models
|
||||||
import douzero.env.env
|
import douzero.env.env
|
||||||
from .file_writer import FileWriter
|
from .file_writer import FileWriter
|
||||||
from .models import Model, OldModel
|
from .models import Model, OldModel
|
||||||
from .utils import get_batch, log, create_env, create_optimizers, act
|
from .utils import get_batch, log, create_env, create_optimizers, act, infer_logic
|
||||||
import psutil
|
import psutil
|
||||||
import shutil
|
import shutil
|
||||||
import requests
|
import requests
|
||||||
|
@ -25,7 +25,7 @@ def compute_loss(logits, targets):
|
||||||
loss = ((logits.squeeze(-1) - targets)**2).mean()
|
loss = ((logits.squeeze(-1) - targets)**2).mean()
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
def learn(position, actor_models, model, batch, optimizer, flags, lock):
|
def learn(position, actor_model, model, batch, optimizer, flags, lock):
|
||||||
"""Performs a learning (optimization) step."""
|
"""Performs a learning (optimization) step."""
|
||||||
position_index = {"landlord": 31, "landlord_up": 32, 'landlord_front': 33, "landlord_down": 34}
|
position_index = {"landlord": 31, "landlord_up": 32, 'landlord_front': 33, "landlord_down": 34}
|
||||||
print("Learn", position)
|
print("Learn", position)
|
||||||
|
@ -60,8 +60,7 @@ def learn(position, actor_models, model, batch, optimizer, flags, lock):
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
if not flags.enable_onnx:
|
if not flags.enable_onnx:
|
||||||
for actor_model in actor_models.values():
|
actor_model.get_model(position).load_state_dict(model.state_dict())
|
||||||
actor_model.get_model(position).load_state_dict(model.state_dict())
|
|
||||||
return stats
|
return stats
|
||||||
|
|
||||||
def train(flags):
|
def train(flags):
|
||||||
|
@ -85,22 +84,12 @@ def train(flags):
|
||||||
T = flags.unroll_length
|
T = flags.unroll_length
|
||||||
B = flags.batch_size
|
B = flags.batch_size
|
||||||
|
|
||||||
if flags.actor_device_cpu:
|
|
||||||
device_iterator = ['cpu']
|
|
||||||
else:
|
|
||||||
device_iterator = range(flags.num_actor_devices) #[0, 'cpu']
|
|
||||||
assert flags.num_actor_devices <= len(flags.gpu_devices.split(',')), 'The number of actor devices can not exceed the number of available devices'
|
|
||||||
|
|
||||||
# Initialize actor models
|
# Initialize actor models
|
||||||
models = {}
|
if flags.old_model:
|
||||||
for device in device_iterator:
|
actor_model = OldModel(device="cpu", flags = flags, lite_model = flags.lite_model)
|
||||||
if flags.old_model:
|
else:
|
||||||
model = OldModel(device="cpu", flags = flags, lite_model = flags.lite_model)
|
actor_model = Model(device="cpu", flags = flags, lite_model = flags.lite_model)
|
||||||
else:
|
actor_model.eval()
|
||||||
model = Model(device="cpu", flags = flags, lite_model = flags.lite_model)
|
|
||||||
model.share_memory()
|
|
||||||
model.eval()
|
|
||||||
models[device] = model
|
|
||||||
|
|
||||||
# Initialize queues
|
# Initialize queues
|
||||||
actor_processes = []
|
actor_processes = []
|
||||||
|
@ -114,9 +103,6 @@ def train(flags):
|
||||||
else:
|
else:
|
||||||
learner_model = Model(device=flags.training_device, lite_model = flags.lite_model)
|
learner_model = Model(device=flags.training_device, lite_model = flags.lite_model)
|
||||||
|
|
||||||
# Create optimizers
|
|
||||||
optimizers = create_optimizers(flags, learner_model)
|
|
||||||
|
|
||||||
# Stat Keys
|
# Stat Keys
|
||||||
stat_keys = [
|
stat_keys = [
|
||||||
'mean_episode_return_landlord',
|
'mean_episode_return_landlord',
|
||||||
|
@ -155,6 +141,9 @@ def train(flags):
|
||||||
)
|
)
|
||||||
onnx_frame.value = frames
|
onnx_frame.value = frames
|
||||||
|
|
||||||
|
# Create optimizers
|
||||||
|
optimizers = create_optimizers(flags, learner_model)
|
||||||
|
|
||||||
# Load models if any
|
# Load models if any
|
||||||
if flags.load_model and os.path.exists(checkpointpath):
|
if flags.load_model and os.path.exists(checkpointpath):
|
||||||
checkpoint_states = torch.load(
|
checkpoint_states = torch.load(
|
||||||
|
@ -164,8 +153,7 @@ def train(flags):
|
||||||
learner_model.get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
learner_model.get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
||||||
optimizers[k].load_state_dict(checkpoint_states["optimizer_state_dict"][k])
|
optimizers[k].load_state_dict(checkpoint_states["optimizer_state_dict"][k])
|
||||||
if not flags.enable_onnx:
|
if not flags.enable_onnx:
|
||||||
for device in device_iterator:
|
actor_model.get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
||||||
models[device].get_model(k).load_state_dict(checkpoint_states["model_state_dict"][k])
|
|
||||||
stats = checkpoint_states["stats"]
|
stats = checkpoint_states["stats"]
|
||||||
|
|
||||||
frames = checkpoint_states["frames"]
|
frames = checkpoint_states["frames"]
|
||||||
|
@ -173,24 +161,39 @@ def train(flags):
|
||||||
sync_onnx_model(frames)
|
sync_onnx_model(frames)
|
||||||
log.info(f"Resuming preempted job, current stats:\n{stats}")
|
log.info(f"Resuming preempted job, current stats:\n{stats}")
|
||||||
|
|
||||||
# Starting actor processes
|
infer_queues = []
|
||||||
for device in device_iterator:
|
num_actors = flags.num_actors
|
||||||
if device == 'cpu':
|
for i in range(num_actors):
|
||||||
num_actors = flags.num_actors_cpu
|
infer_queues.append({
|
||||||
else:
|
'input': ctx.Queue(), 'output': ctx.Queue()
|
||||||
num_actors = flags.num_actors
|
})
|
||||||
for i in range(num_actors):
|
|
||||||
actor = mp.Process(
|
infer_processes = []
|
||||||
target=act,
|
for device in ['0']:
|
||||||
args=(i, device, batch_queues, models[device], flags, onnx_frame))
|
for i in range(flags.num_infer):
|
||||||
actor.daemon = True
|
infer = mp.Process(
|
||||||
actor.start()
|
target=infer_logic,
|
||||||
actor_processes.append({
|
args=(i, device, infer_queues, actor_model, flags, onnx_frame))
|
||||||
|
infer.daemon = True
|
||||||
|
infer.start()
|
||||||
|
infer_processes.append({
|
||||||
'device': device,
|
'device': device,
|
||||||
'i': i,
|
'i': i,
|
||||||
'actor': actor
|
'infer': infer
|
||||||
})
|
})
|
||||||
|
|
||||||
|
# Starting actor processes
|
||||||
|
for i in range(num_actors):
|
||||||
|
actor = mp.Process(
|
||||||
|
target=act,
|
||||||
|
args=(i, infer_queues[i]['input'], infer_queues[i]['output'], batch_queues, actor_model, flags))
|
||||||
|
actor.daemon = True
|
||||||
|
actor.start()
|
||||||
|
actor_processes.append({
|
||||||
|
'i': i,
|
||||||
|
'actor': actor
|
||||||
|
})
|
||||||
|
|
||||||
parent = psutil.Process()
|
parent = psutil.Process()
|
||||||
parent.nice(psutil.NORMAL_PRIORITY_CLASS)
|
parent.nice(psutil.NORMAL_PRIORITY_CLASS)
|
||||||
for child in parent.children():
|
for child in parent.children():
|
||||||
|
@ -201,7 +204,7 @@ def train(flags):
|
||||||
nonlocal frames, position_frames, stats
|
nonlocal frames, position_frames, stats
|
||||||
while frames < flags.total_frames:
|
while frames < flags.total_frames:
|
||||||
batch = get_batch(batch_queues, position, flags, local_lock)
|
batch = get_batch(batch_queues, position, flags, local_lock)
|
||||||
_stats = learn(position, models, learner_model.get_model(position), batch,
|
_stats = learn(position, actor_model, learner_model.get_model(position), batch,
|
||||||
optimizers[position], flags, position_lock)
|
optimizers[position], flags, position_lock)
|
||||||
with lock:
|
with lock:
|
||||||
for k in _stats:
|
for k in _stats:
|
||||||
|
@ -215,13 +218,12 @@ def train(flags):
|
||||||
|
|
||||||
threads = []
|
threads = []
|
||||||
locks = {}
|
locks = {}
|
||||||
for device in device_iterator:
|
locks['cpu'] = {'landlord': threading.Lock(), 'landlord_up': threading.Lock(), 'landlord_front': threading.Lock(), 'landlord_down': threading.Lock()}
|
||||||
locks[device] = {'landlord': threading.Lock(), 'landlord_up': threading.Lock(), 'landlord_front': threading.Lock(), 'landlord_down': threading.Lock()}
|
|
||||||
|
|
||||||
for i in range(flags.num_threads):
|
for i in range(flags.num_threads):
|
||||||
for position in ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']:
|
for position in ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']:
|
||||||
thread = threading.Thread(
|
thread = threading.Thread(
|
||||||
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,position,locks[device][position],position_locks[position]))
|
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,position, locks['cpu'][position],position_locks[position]))
|
||||||
thread.setDaemon(True)
|
thread.setDaemon(True)
|
||||||
thread.start()
|
thread.start()
|
||||||
threads.append(thread)
|
threads.append(thread)
|
||||||
|
@ -303,14 +305,14 @@ def train(flags):
|
||||||
position_fps['landlord_front'],
|
position_fps['landlord_front'],
|
||||||
position_fps['landlord_down'],
|
position_fps['landlord_down'],
|
||||||
pprint.pformat(stats))
|
pprint.pformat(stats))
|
||||||
for proc in actor_processes:
|
# for proc in actor_processes:
|
||||||
if not proc['actor'].is_alive():
|
# if not proc['actor'].is_alive():
|
||||||
actor = mp.Process(
|
# actor = mp.Process(
|
||||||
target=act,
|
# target=act,
|
||||||
args=(proc['i'], proc['device'], batch_queues, models[device], flags, onnx_frame))
|
# args=(proc['i'], proc['device'], batch_queues, models[device], flags, onnx_frame))
|
||||||
actor.daemon = True
|
# actor.daemon = True
|
||||||
actor.start()
|
# actor.start()
|
||||||
proc['actor'] = actor
|
# proc['actor'] = actor
|
||||||
|
|
||||||
except KeyboardInterrupt:
|
except KeyboardInterrupt:
|
||||||
flags.enable_upload = False
|
flags.enable_upload = False
|
||||||
|
|
|
@ -6,21 +6,14 @@ the environment, we do it automatically.
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
def _format_observation(obs, device, flags):
|
def _format_observation(obs):
|
||||||
"""
|
"""
|
||||||
A utility function to process observations and
|
A utility function to process observations and
|
||||||
move them to CUDA.
|
move them to CUDA.
|
||||||
"""
|
"""
|
||||||
position = obs['position']
|
position = obs['position']
|
||||||
if flags.enable_onnx:
|
x_batch = obs['x_batch']
|
||||||
x_batch = obs['x_batch']
|
z_batch = obs['z_batch']
|
||||||
z_batch = obs['z_batch']
|
|
||||||
else:
|
|
||||||
if not device == "cpu":
|
|
||||||
device = 'cuda:' + str(device)
|
|
||||||
device = torch.device(device)
|
|
||||||
x_batch = torch.from_numpy(obs['x_batch']).to(device)
|
|
||||||
z_batch = torch.from_numpy(obs['z_batch']).to(device)
|
|
||||||
x_no_action = torch.from_numpy(obs['x_no_action'])
|
x_no_action = torch.from_numpy(obs['x_no_action'])
|
||||||
z = torch.from_numpy(obs['z'])
|
z = torch.from_numpy(obs['z'])
|
||||||
obs = {'x_batch': x_batch,
|
obs = {'x_batch': x_batch,
|
||||||
|
@ -39,7 +32,7 @@ class Environment:
|
||||||
|
|
||||||
def initial(self, model, device, flags=None):
|
def initial(self, model, device, flags=None):
|
||||||
obs = self.env.reset(model, device, flags=flags)
|
obs = self.env.reset(model, device, flags=flags)
|
||||||
initial_position, initial_obs, x_no_action, z = _format_observation(obs, self.device, flags)
|
initial_position, initial_obs, x_no_action, z = _format_observation(obs)
|
||||||
self.episode_return = torch.zeros(1, 1)
|
self.episode_return = torch.zeros(1, 1)
|
||||||
initial_done = torch.ones(1, 1, dtype=torch.bool)
|
initial_done = torch.ones(1, 1, dtype=torch.bool)
|
||||||
return initial_position, initial_obs, dict(
|
return initial_position, initial_obs, dict(
|
||||||
|
@ -58,7 +51,7 @@ class Environment:
|
||||||
obs = self.env.reset(model, device, flags=flags)
|
obs = self.env.reset(model, device, flags=flags)
|
||||||
self.episode_return = torch.zeros(1, 1)
|
self.episode_return = torch.zeros(1, 1)
|
||||||
|
|
||||||
position, obs, x_no_action, z = _format_observation(obs, self.device, flags)
|
position, obs, x_no_action, z = _format_observation(obs)
|
||||||
# reward = torch.tensor(reward).view(1, 1)
|
# reward = torch.tensor(reward).view(1, 1)
|
||||||
done = torch.tensor(done).view(1, 1)
|
done = torch.tensor(done).view(1, 1)
|
||||||
|
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
import os
|
import os
|
||||||
|
import queue
|
||||||
import typing
|
import typing
|
||||||
import logging
|
import logging
|
||||||
import traceback
|
import traceback
|
||||||
|
@ -111,16 +112,44 @@ def create_optimizers(flags, learner_model):
|
||||||
return optimizers
|
return optimizers
|
||||||
|
|
||||||
|
|
||||||
def act(i, device, batch_queues, model, flags, onnx_frame):
|
def infer_logic(i, device, infer_queues, model, flags, onnx_frame):
|
||||||
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
||||||
if not flags.enable_onnx:
|
if not flags.enable_onnx:
|
||||||
for pos in positions:
|
for pos in positions:
|
||||||
model.models[pos].to(torch.device(device if device == "cpu" else ("cuda:"+str(device))))
|
model.models[pos].to(torch.device(device if device == "cpu" else ("cuda:"+str(device))))
|
||||||
|
last_onnx_frame = -1
|
||||||
|
log.info('Infer %i started.', i)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
# print("posi", position)
|
||||||
|
if flags.enable_onnx and onnx_frame.value != last_onnx_frame:
|
||||||
|
last_onnx_frame = onnx_frame.value
|
||||||
|
model.set_onnx_model(device)
|
||||||
|
all_empty = True
|
||||||
|
for infer_queue in infer_queues:
|
||||||
|
try:
|
||||||
|
task = infer_queue['input'].get_nowait()
|
||||||
|
with torch.no_grad():
|
||||||
|
agent_output = model.forward(task['position'], task['z_batch'], task['x_batch'], flags=flags)
|
||||||
|
_action_idx = int(agent_output['action'])
|
||||||
|
infer_queue['output'].put({
|
||||||
|
'action': _action_idx
|
||||||
|
})
|
||||||
|
all_empty = False
|
||||||
|
except queue.Empty:
|
||||||
|
pass
|
||||||
|
if all_empty:
|
||||||
|
time.sleep(0.01)
|
||||||
|
|
||||||
|
|
||||||
|
def act(i, input_queue, output_queue, batch_queues, actor_model, flags):
|
||||||
|
positions = ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']
|
||||||
try:
|
try:
|
||||||
T = flags.unroll_length
|
T = flags.unroll_length
|
||||||
log.info('Device %s Actor %i started.', str(device), i)
|
log.info('Actor %i started.', i)
|
||||||
|
|
||||||
env = create_env(flags)
|
env = create_env(flags)
|
||||||
|
device = 'cpu'
|
||||||
env = Environment(env, device)
|
env = Environment(env, device)
|
||||||
|
|
||||||
done_buf = {p: [] for p in positions}
|
done_buf = {p: [] for p in positions}
|
||||||
|
@ -136,18 +165,16 @@ def act(i, device, batch_queues, model, flags, onnx_frame):
|
||||||
|
|
||||||
position_index = {"landlord": 31, "landlord_up": 32, "landlord_front": 33, "landlord_down": 34}
|
position_index = {"landlord": 31, "landlord_up": 32, "landlord_front": 33, "landlord_down": 34}
|
||||||
|
|
||||||
position, obs, env_output = env.initial(model, device, flags=flags)
|
position, obs, env_output = env.initial(actor_model, device, flags=flags)
|
||||||
last_onnx_frame = -1
|
|
||||||
while True:
|
while True:
|
||||||
# print("posi", position)
|
|
||||||
if flags.enable_onnx and onnx_frame.value != last_onnx_frame:
|
|
||||||
last_onnx_frame = onnx_frame.value
|
|
||||||
model.set_onnx_model(device)
|
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
if len(obs['legal_actions']) > 1:
|
if len(obs['legal_actions']) > 1:
|
||||||
with torch.no_grad():
|
input_queue.put({
|
||||||
agent_output = model.forward(position, obs['z_batch'], obs['x_batch'], flags=flags)
|
'position': position,
|
||||||
|
'z_batch': obs['z_batch'],
|
||||||
|
'x_batch': obs['x_batch']
|
||||||
|
})
|
||||||
|
agent_output = output_queue.get()
|
||||||
_action_idx = int(agent_output['action'])
|
_action_idx = int(agent_output['action'])
|
||||||
action = obs['legal_actions'][_action_idx]
|
action = obs['legal_actions'][_action_idx]
|
||||||
else:
|
else:
|
||||||
|
@ -162,7 +189,7 @@ def act(i, device, batch_queues, model, flags, onnx_frame):
|
||||||
x_batch = env_output['obs_x_no_action'].float()
|
x_batch = env_output['obs_x_no_action'].float()
|
||||||
obs_x_batch_buf[position].append(x_batch)
|
obs_x_batch_buf[position].append(x_batch)
|
||||||
type_buf[position].append(position_index[position])
|
type_buf[position].append(position_index[position])
|
||||||
position, obs, env_output = env.step(action, model, device, flags=flags)
|
position, obs, env_output = env.step(action, actor_model, device, flags=flags)
|
||||||
size[position] += 1
|
size[position] += 1
|
||||||
if env_output['done']:
|
if env_output['done']:
|
||||||
for p in positions:
|
for p in positions:
|
||||||
|
|
Loading…
Reference in New Issue