Douzero_Resnet/douzero/dmc/env_utils.py

67 lines
2.0 KiB
Python

"""
Here, we wrap the original environment to make it easier
to use. When a game is finished, instead of mannualy reseting
the environment, we do it automatically.
"""
import numpy as np
import torch
def _format_observation(obs):
"""
A utility function to process observations and
move them to CUDA.
"""
position = obs['position']
x_batch = obs['x_batch']
z_batch = obs['z_batch']
x_no_action = torch.from_numpy(obs['x_no_action'])
z = torch.from_numpy(obs['z'])
obs = {'x_batch': x_batch,
'z_batch': z_batch,
'legal_actions': obs['legal_actions'],
}
return position, obs, x_no_action, z
class Environment:
def __init__(self, env, device):
""" Initialzie this environment wrapper
"""
self.env = env
self.device = device
self.episode_return = None
def initial(self, flags=None):
obs = self.env.reset(flags=flags)
initial_position, initial_obs, x_no_action, z = _format_observation(obs)
self.episode_return = torch.zeros(1, 1)
initial_done = torch.ones(1, 1, dtype=torch.bool)
return initial_position, initial_obs, dict(
done=initial_done,
episode_return=self.episode_return,
obs_x_no_action=x_no_action,
obs_z=z,
)
def step(self, action, flags=None):
obs, reward, done, _ = self.env.step(action)
self.episode_return = reward
episode_return = self.episode_return
if done:
obs = self.env.reset(flags=flags)
self.episode_return = torch.zeros(1, 1)
position, obs, x_no_action, z = _format_observation(obs)
# reward = torch.tensor(reward).view(1, 1)
done = torch.tensor(done).view(1, 1)
return position, obs, dict(
done=done,
episode_return=episode_return,
obs_x_no_action=x_no_action,
obs_z=z,
)
def close(self):
self.env.close()