Douzero_Resnet/douzero/env/env.py

1636 lines
65 KiB
Python

from collections import Counter
import numpy as np
import random
import torch
import BidModel
from douzero.env.game import GameEnv
env_version = "3.2"
env_url = "http://od.vcccz.com/hechuan/env.py"
Card2Column = {3: 0, 4: 1, 5: 2, 6: 3, 7: 4, 8: 5, 9: 6, 10: 7,
11: 8, 12: 9, 13: 10, 14: 11, 17: 12}
NumOnes2Array = {0: np.array([0, 0, 0, 0, 0, 0, 0, 0]),
1: np.array([1, 0, 0, 0, 0, 0, 0, 0]),
2: np.array([1, 1, 0, 0, 0, 0, 0, 0]),
3: np.array([1, 1, 1, 0, 0, 0, 0, 0]),
4: np.array([1, 1, 1, 1, 0, 0, 0, 0]),
5: np.array([1, 1, 1, 1, 1, 0, 0, 0]),
6: np.array([1, 1, 1, 1, 1, 1, 0, 0]),
7: np.array([1, 1, 1, 1, 1, 1, 1, 0]),
8: np.array([1, 1, 1, 1, 1, 1, 1, 1])}
deck = []
for i in range(3, 15):
deck.extend([i for _ in range(8)])
deck.extend([17 for _ in range(8)])
deck.extend([20, 20, 30, 30])
class Env:
"""
Doudizhu multi-agent wrapper
"""
def __init__(self, objective):
"""
Objective is wp/adp/logadp. It indicates whether considers
bomb in reward calculation. Here, we use dummy agents.
This is because, in the orignial game, the players
are `in` the game. Here, we want to isolate
players and environments to have a more gym style
interface. To achieve this, we use dummy players
to play. For each move, we tell the corresponding
dummy player which action to play, then the player
will perform the actual action in the game engine.
"""
self.objective = objective
# Initialize players
# We use three dummy player for the target position
self.players = {}
for position in ['landlord', 'landlord_up', 'landlord_front', 'landlord_down']:
self.players[position] = DummyAgent(position)
# Initialize the internal environment
self._env = GameEnv(self.players)
self.total_round = 0
self.force_bid = 0
self.infoset = None
def reset(self, model, device, flags=None):
"""
Every time reset is called, the environment
will be re-initialized with a new deck of cards.
This function is usually called when a game is over.
"""
self._env.reset()
# Randomly shuffle the deck
if model is None:
_deck = deck.copy()
np.random.shuffle(_deck)
card_play_data = {'landlord': _deck[:33],
'landlord_up': _deck[33:58],
'landlord_front': _deck[58:83],
'landlord_down': _deck[83:108],
# 'three_landlord_cards': _deck[17:20],
}
for key in card_play_data:
card_play_data[key].sort()
self._env.card_play_init(card_play_data)
self.infoset = self._game_infoset
return get_obs(self.infoset)
else:
self.total_round += 1
bid_done = False
card_play_data = []
landlord_cards = []
last_bid = 0
bid_count = 0
player_ids = {}
bid_info = None
bid_obs_buffer = []
multiply_obs_buffer = []
bid_limit = 3
force_bid = False
while not bid_done:
bid_limit -= 1
bid_obs_buffer.clear()
multiply_obs_buffer.clear()
_deck = deck.copy()
np.random.shuffle(_deck)
card_play_data = [
_deck[:25],
_deck[25:50],
_deck[50:75],
_deck[75:100],
]
for i in range(4):
card_play_data[i].sort()
landlord_cards = _deck[100:108]
landlord_cards.sort()
bid_info = np.array([[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1],
[-1, -1, -1, -1]])
bidding_player = random.randint(0, 2)
# bidding_player = 0 # debug
first_bid = -1
last_bid = -1
bid_count = 0
if bid_limit <= 0:
force_bid = True
for r in range(4):
bidding_obs = _get_obs_for_bid(bidding_player, bid_info, card_play_data[bidding_player])
with torch.no_grad():
action = model.forward("bidding", torch.tensor(bidding_obs["z_batch"], device=device),
torch.tensor(bidding_obs["x_batch"], device=device), flags=flags)
# if bid_limit <= 0:
# wr = BidModel.predict_env(card_play_data[bidding_player])
# if wr >= 0.7:
# action = {"action": 1} # debug
# bid_limit += 1
bid_obs_buffer.append({
"x_batch": bidding_obs["x_batch"][action["action"]],
"z_batch": bidding_obs["z_batch"][action["action"]],
"pid": bidding_player
})
if action["action"] == 1:
last_bid = bidding_player
bid_count += 1
if first_bid == -1:
first_bid = bidding_player
for p in range(4):
if p == bidding_player:
bid_info[r][p] = 1
else:
bid_info[r][p] = 0
else:
bid_info[r] = [0, 0, 0, 0]
bidding_player = (bidding_player + 1) % 4
one_count = np.count_nonzero(bid_info == 1)
if one_count == 0:
continue
elif one_count > 1:
r = 4
bidding_player = first_bid
bidding_obs = _get_obs_for_bid(bidding_player, bid_info, card_play_data[bidding_player])
with torch.no_grad():
action = model.forward("bidding", torch.tensor(bidding_obs["z_batch"], device=device),
torch.tensor(bidding_obs["x_batch"], device=device), flags=flags)
bid_obs_buffer.append({
"x_batch": bidding_obs["x_batch"][action["action"]],
"z_batch": bidding_obs["z_batch"][action["action"]],
"pid": bidding_player
})
if action["action"] == 1:
last_bid = bidding_player
bid_count += 1
for p in range(4):
if p == bidding_player:
bid_info[r][p] = 1
else:
bid_info[r][p] = 0
break
card_play_data[last_bid].extend(landlord_cards)
card_play_data = {'landlord': card_play_data[last_bid],
'landlord_up': card_play_data[(last_bid - 1) % 4],
'landlord_down': card_play_data[(last_bid + 1) % 4],
'landlord_front': card_play_data[(last_bid + 2) % 4],
# 'three_landlord_cards': landlord_cards,
}
card_play_data["landlord"].sort()
player_ids = {
'landlord': last_bid,
'landlord_up': (last_bid - 1) % 4,
'landlord_down': (last_bid + 1) % 4,
'landlord_front': (last_bid + 2) % 4,
}
player_positions = {
last_bid: 'landlord',
(last_bid - 1) % 4: 'landlord_up',
(last_bid + 1) % 4: 'landlord_down',
(last_bid + 2) % 4: 'landlord_front',
}
for bid_obs in bid_obs_buffer:
bid_obs.update({"position": player_positions[bid_obs["pid"]]})
# Initialize the cards
self._env.card_play_init(card_play_data)
multiply_map = [
np.array([1, 0, 0, 0]),
np.array([0, 1, 0, 0]),
np.array([0, 0, 1, 0]),
np.array([0, 0, 0, 1])
]
for pos in ["landlord", "landlord_up", "landlord_front", "landlord_down"]:
pid = player_ids[pos]
self._env.info_sets[pos].player_id = pid
self._env.info_sets[pos].bid_info = bid_info[:, [(pid - 1) % 4, pid, (pid + 1) % 4, (pid + 2) % 4]]
self._env.bid_count = bid_count
# multiply_obs = _get_obs_for_multiply(pos, self._env.info_sets[pos].bid_info, card_play_data[pos],
# landlord_cards)
# action = model.forward(pos, torch.tensor(multiply_obs["z_batch"], device=device),
# torch.tensor(multiply_obs["x_batch"], device=device), flags=flags)
# multiply_obs_buffer.append({
# "x_batch": multiply_obs["x_batch"][action["action"]],
# "z_batch": multiply_obs["z_batch"][action["action"]],
# "position": pos
# })
action = {"action": 0}
self._env.info_sets[pos].multiply_info = multiply_map[action["action"]]
self._env.multiply_count[pos] = action["action"]
self.infoset = self._game_infoset
if force_bid:
self.force_bid += 1
if self.total_round % 100 == 0:
print("发牌情况: %i/%i %.1f%%" % (self.force_bid, self.total_round, self.force_bid / self.total_round * 100))
self.force_bid = 0
self.total_round = 0
return get_obs(self.infoset), {
"bid_obs_buffer": bid_obs_buffer,
"multiply_obs_buffer": multiply_obs_buffer
}
def step(self, action):
"""
Step function takes as input the action, which
is a list of integers, and output the next obervation,
reward, and a Boolean variable indicating whether the
current game is finished. It also returns an empty
dictionary that is reserved to pass useful information.
"""
assert action in self.infoset.legal_actions
self.players[self._acting_player_position].set_action(action)
self._env.step()
self.infoset = self._game_infoset
done = False
reward = 0.0
if self._game_over:
done = True
reward = {
"play": {
"landlord": self._get_reward("landlord"),
"landlord_up": self._get_reward("landlord_up"),
"landlord_front": self._get_reward("landlord_front"),
"landlord_down": self._get_reward("landlord_down")
},
"bid": {
"landlord": self._get_reward_bidding("landlord")*3,
"landlord_up": self._get_reward_bidding("landlord_up"),
"landlord_front": self._get_reward_bidding("landlord_front"),
"landlord_down": self._get_reward_bidding("landlord_down")
}
}
obs = None
else:
obs = get_obs(self.infoset)
return obs, reward, done, {}
def _get_reward(self, pos):
"""
This function is called in the end of each
game. It returns either 1/-1 for win/loss,
or ADP, i.e., every bomb will double the score.
"""
winner = self._game_winner
bomb_num = self._game_bomb_num
self_bomb_num = self._env.pos_bomb_num[pos]
if winner == 'landlord':
if self.objective == 'adp':
return (1.1 - self._env.step_count * 0.00125) * (1.3 ** bomb_num[0]) * (1.95 ** bomb_num[1]) / 8
elif self.objective == 'logadp':
return (1.0 - self._env.step_count * 0.00125) * 1.3**self_bomb_num * 2**self._env.multiply_count[pos] / 4
else:
return 1.0 - self._env.step_count * 0.00125
else:
if self.objective == 'adp':
return (-1.1 + self._env.step_count * 0.00125) * (1.3 ** bomb_num[0]) * (1.95 ** bomb_num[1]) / 8
elif self.objective == 'logadp':
return (-1.0 + self._env.step_count * 0.00125) * 1.3**(self_bomb_num) * 2**self._env.multiply_count[pos] / 4
else:
return -1.0 + self._env.step_count * 0.00125
def _get_reward_bidding(self, pos):
"""
This function is called in the end of each
game. It returns either 1/-1 for win/loss,
or ADP, i.e., every bomb will double the score.
"""
winner = self._game_winner
bomb_num = self._game_bomb_num
if winner == 'landlord':
return 1.0 * 2**(self._env.bid_count-1) / 8
else:
return -1.0 * 2**(self._env.bid_count-1) / 8
@property
def _game_infoset(self):
"""
Here, inforset is defined as all the information
in the current situation, incuding the hand cards
of all the players, all the historical moves, etc.
That is, it contains perferfect infomation. Later,
we will use functions to extract the observable
information from the views of the three players.
"""
return self._env.game_infoset
@property
def _game_bomb_num(self):
"""
The number of bombs played so far. This is used as
a feature of the neural network and is also used to
calculate ADP.
"""
return self._env.get_bomb_num()
@property
def _game_winner(self):
""" A string of landlord/peasants
"""
return self._env.get_winner()
@property
def _acting_player_position(self):
"""
The player that is active. It can be landlord,
landlod_down, or landlord_up.
"""
return self._env.acting_player_position
@property
def _game_over(self):
""" Returns a Boolean
"""
return self._env.game_over
class DummyAgent(object):
"""
Dummy agent is designed to easily interact with the
game engine. The agent will first be told what action
to perform. Then the environment will call this agent
to perform the actual action. This can help us to
isolate environment and agents towards a gym like
interface.
"""
def __init__(self, position):
self.position = position
self.action = None
def act(self, infoset):
"""
Simply return the action that is set previously.
"""
assert self.action in infoset.legal_actions
return self.action
def set_action(self, action):
"""
The environment uses this function to tell
the dummy agent what to do.
"""
self.action = action
def get_obs(infoset, use_general=True):
"""
This function obtains observations with imperfect information
from the infoset. It has three branches since we encode
different features for different positions.
This function will return dictionary named `obs`. It contains
several fields. These fields will be used to train the model.
One can play with those features to improve the performance.
`position` is a string that can be landlord/landlord_down/landlord_front/landlord_up
`x_batch` is a batch of features (excluding the hisorical moves).
It also encodes the action feature
`z_batch` is a batch of features with hisorical moves only.
`legal_actions` is the legal moves
`x_no_action`: the features (exluding the hitorical moves and
the action features). It does not have the batch dim.
`z`: same as z_batch but not a batch.
"""
if use_general:
if infoset.player_position not in ["landlord", "landlord_up", "landlord_front", "landlord_down"]:
raise ValueError('')
return _get_obs_general(infoset, infoset.player_position)
else:
if infoset.player_position == 'landlord':
return _get_obs_landlord(infoset)
elif infoset.player_position == 'landlord_up':
return _get_obs_landlord_up(infoset)
elif infoset.player_position == 'landlord_front':
return _get_obs_landlord_front(infoset)
elif infoset.player_position == 'landlord_down':
return _get_obs_landlord_down(infoset)
else:
raise ValueError('')
def _get_one_hot_array(num_left_cards, max_num_cards):
"""
A utility function to obtain one-hot endoding
"""
one_hot = np.zeros(max_num_cards)
if num_left_cards > 0:
one_hot[num_left_cards - 1] = 1
return one_hot
def _cards2array(list_cards):
"""
A utility function that transforms the actions, i.e.,
A list of integers into card matrix. Here we remove
the six entries that are always zero and flatten the
the representations.
"""
if len(list_cards) == 0:
return np.zeros(108, dtype=np.int8)
matrix = np.zeros([8, 13], dtype=np.int8)
jokers = np.zeros(4, dtype=np.int8)
counter = Counter(list_cards)
for card, num_times in counter.items():
if card < 20:
matrix[:, Card2Column[card]] = NumOnes2Array[num_times]
elif card == 20:
jokers[0] = 1
if num_times == 2:
jokers[1] = 1
elif card == 30:
jokers[2] = 1
if num_times == 2:
jokers[3] = 1
return np.concatenate((matrix.flatten('F'), jokers))
# def _action_seq_list2array(action_seq_list):
# """
# A utility function to encode the historical moves.
# We encode the historical 15 actions. If there is
# no 15 actions, we pad the features with 0. Since
# three moves is a round in DouDizhu, we concatenate
# the representations for each consecutive three moves.
# Finally, we obtain a 5x162 matrix, which will be fed
# into LSTM for encoding.
# """
# action_seq_array = np.zeros((len(action_seq_list), 108))
# for row, list_cards in enumerate(action_seq_list):
# action_seq_array[row, :] = _cards2array(list_cards)
# # action_seq_array = action_seq_array.reshape(5, 162)
# return action_seq_array
def _action_seq_list2array(action_seq_list, new_model=True):
"""
A utility function to encode the historical moves.
We encode the historical 20 actions. If there is
no 20 actions, we pad the features with 0. Since
three moves is a round in DouDizhu, we concatenate
the representations for each consecutive three moves.
Finally, we obtain a 5x432 matrix, which will be fed
into LSTM for encoding.
"""
if new_model:
# position_map = {"landlord": 0, "landlord_up": 1, "landlord_front": 2, "landlord_down": 3}
action_seq_array = np.ones((len(action_seq_list), 108)) * -1 # Default Value -1 for not using area
for row, list_cards in enumerate(action_seq_list):
if list_cards != []:
action_seq_array[row, :108] = _cards2array(list_cards[1])
else:
action_seq_array = np.zeros((len(action_seq_list), 108))
for row, list_cards in enumerate(action_seq_list):
if list_cards != []:
action_seq_array[row, :] = _cards2array(list_cards[1])
action_seq_array = action_seq_array.reshape(5, 432)
return action_seq_array
# action_seq_array = np.zeros((len(action_seq_list), 54))
# for row, list_cards in enumerate(action_seq_list):
# if list_cards != []:
# action_seq_array[row, :] = _cards2array(list_cards[1])
# return action_seq_array
def _process_action_seq(sequence, length=20, new_model=True):
"""
A utility function encoding historical moves. We
encode 20 moves. If there is no 20 moves, we pad
with zeros.
"""
sequence = sequence[-length:].copy()
if new_model:
sequence = sequence[::-1]
if len(sequence) < length:
empty_sequence = [[] for _ in range(length - len(sequence))]
empty_sequence.extend(sequence)
sequence = empty_sequence
return sequence
def _get_one_hot_bomb(bomb_num):
"""
A utility function to encode the number of bombs
into one-hot representation.
"""
one_hot = np.zeros(29)
one_hot[bomb_num[0] + bomb_num[1]] = 1
return one_hot
def _get_obs_landlord(infoset):
"""
Obttain the landlord features. See Table 4 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
landlord_up_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 25)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_front_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_front'], 25)
landlord_front_num_cards_left_batch = np.repeat(
landlord_front_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 25)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_front_played_cards = _cards2array(
infoset.played_cards['landlord_front'])
landlord_front_played_cards_batch = np.repeat(
landlord_front_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
last_action_batch,
landlord_up_played_cards_batch,
landlord_front_played_cards_batch,
landlord_down_played_cards_batch,
landlord_up_num_cards_left_batch,
landlord_front_num_cards_left_batch,
landlord_down_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
last_action,
landlord_up_played_cards,
landlord_front_played_cards,
landlord_down_played_cards,
landlord_up_num_cards_left,
landlord_front_num_cards_left,
landlord_down_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq, 20, False), False)
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_landlord_up(infoset):
"""
Obttain the landlord_up features. See Table 5 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
last_landlord_action = _cards2array(
infoset.last_move_dict['landlord'])
last_landlord_action_batch = np.repeat(
last_landlord_action[np.newaxis, :],
num_legal_actions, axis=0)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 33)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_action = _cards2array(
infoset.last_move_dict['landlord_down'])
last_teammate_action_batch = np.repeat(
last_teammate_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 25)
teammate_num_cards_left_batch = np.repeat(
teammate_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
teammate_played_cards_batch = np.repeat(
teammate_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_front_action = _cards2array(
infoset.last_move_dict['landlord_front'])
last_teammate_front_action_batch = np.repeat(
last_teammate_front_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_front_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_front'], 25)
teammate_front_num_cards_left_batch = np.repeat(
teammate_front_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_front_played_cards = _cards2array(
infoset.played_cards['landlord_front'])
teammate_front_played_cards_batch = np.repeat(
teammate_front_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
landlord_played_cards_batch,
teammate_played_cards_batch,
teammate_front_played_cards_batch,
last_action_batch,
last_landlord_action_batch,
last_teammate_action_batch,
last_teammate_front_action_batch,
landlord_num_cards_left_batch,
teammate_num_cards_left_batch,
teammate_front_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
landlord_played_cards,
teammate_played_cards,
teammate_front_played_cards,
last_action,
last_landlord_action,
last_teammate_action,
last_teammate_front_action,
landlord_num_cards_left,
teammate_num_cards_left,
teammate_front_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq, 20, False), False)
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord_up',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_landlord_front(infoset):
"""
Obttain the landlord_front features. See Table 5 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
last_landlord_action = _cards2array(
infoset.last_move_dict['landlord'])
last_landlord_action_batch = np.repeat(
last_landlord_action[np.newaxis, :],
num_legal_actions, axis=0)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 33)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_action = _cards2array(
infoset.last_move_dict['landlord_down'])
last_teammate_action_batch = np.repeat(
last_teammate_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 25)
teammate_num_cards_left_batch = np.repeat(
teammate_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
teammate_played_cards_batch = np.repeat(
teammate_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_front_action = _cards2array(
infoset.last_move_dict['landlord_front'])
last_teammate_front_action_batch = np.repeat(
last_teammate_front_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_front_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_front'], 25)
teammate_front_num_cards_left_batch = np.repeat(
teammate_front_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_front_played_cards = _cards2array(
infoset.played_cards['landlord_front'])
teammate_front_played_cards_batch = np.repeat(
teammate_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
landlord_played_cards_batch,
teammate_played_cards_batch,
teammate_front_played_cards_batch,
last_action_batch,
last_landlord_action_batch,
last_teammate_action_batch,
last_teammate_front_action_batch,
landlord_num_cards_left_batch,
teammate_num_cards_left_batch,
teammate_front_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
landlord_played_cards,
teammate_played_cards,
teammate_front_played_cards,
last_action,
last_landlord_action,
last_teammate_action,
last_teammate_front_action,
landlord_num_cards_left,
teammate_num_cards_left,
teammate_front_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq, 20, False), False)
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord_front',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_landlord_down(infoset):
"""
Obttain the landlord_down features. See Table 5 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
last_landlord_action = _cards2array(
infoset.last_move_dict['landlord'])
last_landlord_action_batch = np.repeat(
last_landlord_action[np.newaxis, :],
num_legal_actions, axis=0)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 33)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_action = _cards2array(
infoset.last_move_dict['landlord_up'])
last_teammate_action_batch = np.repeat(
last_teammate_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 25)
teammate_num_cards_left_batch = np.repeat(
teammate_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
teammate_played_cards_batch = np.repeat(
teammate_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_teammate_front_action = _cards2array(
infoset.last_move_dict['landlord_front'])
last_teammate_front_action_batch = np.repeat(
last_teammate_front_action[np.newaxis, :],
num_legal_actions, axis=0)
teammate_front_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_front'], 25)
teammate_front_num_cards_left_batch = np.repeat(
teammate_front_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
teammate_front_played_cards = _cards2array(
infoset.played_cards['landlord_front'])
teammate_front_played_cards_batch = np.repeat(
teammate_front_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
landlord_played_cards_batch,
teammate_played_cards_batch,
teammate_front_played_cards_batch,
last_action_batch,
last_landlord_action_batch,
last_teammate_action_batch,
last_teammate_front_action_batch,
landlord_num_cards_left_batch,
teammate_num_cards_left_batch,
teammate_front_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
landlord_played_cards,
teammate_played_cards,
teammate_front_played_cards,
last_action,
last_landlord_action,
last_teammate_action,
last_teammate_front_action,
landlord_num_cards_left,
teammate_num_cards_left,
teammate_front_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq, 20, False), False)
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord_down',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_landlord_withbid(infoset):
"""
Obttain the landlord features. See Table 4 in
https://arxiv.org/pdf/2106.06135.pdf
"""
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
landlord_up_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 17)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 17)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((my_handcards_batch,
other_handcards_batch,
last_action_batch,
landlord_up_played_cards_batch,
landlord_down_played_cards_batch,
landlord_up_num_cards_left_batch,
landlord_down_num_cards_left_batch,
bomb_num_batch,
my_action_batch))
x_no_action = np.hstack((my_handcards,
other_handcards,
last_action,
landlord_up_played_cards,
landlord_down_played_cards,
landlord_up_num_cards_left,
landlord_down_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq, 20, False), False)
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': 'landlord',
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_general1(infoset, position):
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
position_map = {
"landlord": [1, 0, 0],
"landlord_up": [0, 1, 0],
"landlord_down": [0, 0, 1]
}
position_info = np.array(position_map[position])
position_info_batch = np.repeat(position_info[np.newaxis, :],
num_legal_actions, axis=0)
bid_info = np.array(infoset.bid_info).flatten()
bid_info_batch = np.repeat(bid_info[np.newaxis, :],
num_legal_actions, axis=0)
multiply_info = np.array(infoset.multiply_info)
multiply_info_batch = np.repeat(multiply_info[np.newaxis, :],
num_legal_actions, axis=0)
three_landlord_cards = _cards2array(infoset.three_landlord_cards)
three_landlord_cards_batch = np.repeat(three_landlord_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 20)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 17)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 17)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards_left_list = []
for pos in ["landlord", "landlord_up", "landlord_up"]:
if pos != position:
other_handcards_left_list.extend(infoset.all_handcards[pos])
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((position_info_batch, # 4
my_handcards_batch, # 108
other_handcards_batch, # 108
three_landlord_cards_batch, # 108
last_action_batch, # 108
landlord_played_cards_batch, # 108
landlord_up_played_cards_batch, # 108
landlord_down_played_cards_batch, # 108
landlord_num_cards_left_batch, # 20
landlord_up_num_cards_left_batch, # 17
landlord_down_num_cards_left_batch, # 17
bomb_num_batch, # 15
bid_info_batch, # 12
multiply_info_batch, # 3
my_action_batch)) # 108
x_no_action = np.hstack((position_info,
my_handcards,
other_handcards,
three_landlord_cards,
last_action,
landlord_played_cards,
landlord_up_played_cards,
landlord_down_played_cards,
landlord_num_cards_left,
landlord_up_num_cards_left,
landlord_down_num_cards_left,
bomb_num,
bid_info,
multiply_info))
z = _action_seq_list2array(_process_action_seq(
infoset.card_play_action_seq, 32))
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': position,
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def _get_obs_general(infoset, position):
num_legal_actions = len(infoset.legal_actions)
my_handcards = _cards2array(infoset.player_hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards = _cards2array(infoset.other_hand_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
position_map = {
"landlord": [1, 0, 0, 0],
"landlord_up": [0, 1, 0, 0],
"landlord_front": [0, 0, 1, 0],
"landlord_down": [0, 0, 0, 1]
}
position_info = np.array(position_map[position])
position_info_batch = np.repeat(position_info[np.newaxis, :],
num_legal_actions, axis=0)
bid_info = np.array(infoset.bid_info).flatten()
bid_info_batch = np.repeat(bid_info[np.newaxis, :],
num_legal_actions, axis=0)
multiply_info = np.array(infoset.multiply_info)
multiply_info_batch = np.repeat(multiply_info[np.newaxis, :],
num_legal_actions, axis=0)
# three_landlord_cards = _cards2array(infoset.three_landlord_cards)
# three_landlord_cards_batch = np.repeat(three_landlord_cards[np.newaxis, :],
# num_legal_actions, axis=0)
last_action = _cards2array(infoset.last_move)
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j, action in enumerate(infoset.legal_actions):
my_action_batch[j, :] = _cards2array(action)
landlord_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord'], 33)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_up'], 25)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_front_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_front'], 25)
landlord_front_num_cards_left_batch = np.repeat(
landlord_front_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(
infoset.num_cards_left_dict['landlord_down'], 25)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
other_handcards_left_list = []
for pos in ["landlord", "landlord_up", "landlord_front", "landlord_down"]:
if pos != position:
other_handcards_left_list.extend(infoset.all_handcards[pos])
landlord_played_cards = _cards2array(
infoset.played_cards['landlord'])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array(
infoset.played_cards['landlord_up'])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_front_played_cards = _cards2array(
infoset.played_cards['landlord_front'])
landlord_front_played_cards_batch = np.repeat(
landlord_front_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array(
infoset.played_cards['landlord_down'])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(
infoset.bomb_num)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
num_cards_left = np.hstack((
landlord_num_cards_left, # 33
landlord_up_num_cards_left, # 25
landlord_front_num_cards_left, # 25
landlord_down_num_cards_left))
x_batch = np.hstack((
bid_info_batch, # 16
multiply_info_batch)) # 4
x_no_action = np.hstack((
bid_info,
multiply_info))
z =np.vstack((
num_cards_left,
my_handcards, # 108
other_handcards, # 108
# three_landlord_cards, # 108
landlord_played_cards, # 108
landlord_up_played_cards, # 108
landlord_front_played_cards, # 108
landlord_down_played_cards, # 108
_action_seq_list2array(_process_action_seq(infoset.card_play_action_seq, 32))
))
_z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
my_action_batch = my_action_batch[:,np.newaxis,:]
z_batch = np.zeros([len(_z_batch),40,108],int)
for i in range(0,len(_z_batch)):
z_batch[i] = np.vstack((my_action_batch[i],_z_batch[i]))
obs = {
'position': position,
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': infoset.legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
}
return obs
def gen_bid_legal_actions(player_id, bid_info):
self_bid_info = bid_info[:, [(player_id - 1) % 4, player_id, (player_id + 1) % 4, (player_id + 2) % 4]]
curr_round = -1
for r in range(5):
if -1 in self_bid_info[r]:
curr_round = r
break
bid_actions = []
if curr_round != -1:
self_bid_info[curr_round] = [0, 0, 0, 0]
bid_actions.append(np.array(self_bid_info).flatten())
self_bid_info[curr_round] = [0, 1, 0, 0]
bid_actions.append(np.array(self_bid_info).flatten())
return np.array(bid_actions)
def _get_obs_for_bid_legacy(player_id, bid_info, hand_cards):
all_cards = [3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12,
12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17, 20, 30]
num_legal_actions = 2
my_handcards = _cards2array(hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_cards = []
other_cards.extend(all_cards)
for card in hand_cards:
other_cards.remove(card)
other_handcards = _cards2array(other_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
position_info = np.array([0, 0, 0])
position_info_batch = np.repeat(position_info[np.newaxis, :],
num_legal_actions, axis=0)
bid_legal_actions = gen_bid_legal_actions(player_id, bid_info)
bid_info = bid_legal_actions[0]
bid_info_batch = bid_legal_actions
multiply_info = np.array([0, 0, 0])
multiply_info_batch = np.repeat(multiply_info[np.newaxis, :],
num_legal_actions, axis=0)
three_landlord_cards = _cards2array([])
three_landlord_cards_batch = np.repeat(three_landlord_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array([])
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j in range(2):
my_action_batch[j, :] = _cards2array([])
landlord_num_cards_left = _get_one_hot_array(0, 20)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_num_cards_left = _get_one_hot_array(0, 17)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(0, 17)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array([])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array([])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array([])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(0)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((position_info_batch,
my_handcards_batch,
other_handcards_batch,
three_landlord_cards_batch,
last_action_batch,
landlord_played_cards_batch,
landlord_up_played_cards_batch,
landlord_down_played_cards_batch,
landlord_num_cards_left_batch,
landlord_up_num_cards_left_batch,
landlord_down_num_cards_left_batch,
bomb_num_batch,
bid_info_batch,
multiply_info_batch,
my_action_batch))
x_no_action = np.hstack((position_info,
my_handcards,
other_handcards,
three_landlord_cards,
last_action,
landlord_played_cards,
landlord_up_played_cards,
landlord_down_played_cards,
landlord_num_cards_left,
landlord_up_num_cards_left,
landlord_down_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq([], 32))
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': "",
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': bid_legal_actions,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
"bid_info_batch": bid_info_batch.astype(np.int8),
"multiply_info": multiply_info.astype(np.int8)
}
return obs
def _get_obs_for_bid(player_id, bid_info, hand_cards):
# all_cards = [3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
# 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12,
# 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17, 20, 30]
num_legal_actions = 2
my_handcards = _cards2array(hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
bid_legal_actions = gen_bid_legal_actions(player_id, bid_info)
bid_info = bid_legal_actions[0]
bid_info_batch = np.hstack([bid_legal_actions for _ in range(5)])
x_batch = np.hstack((my_handcards_batch,
bid_info_batch))
x_no_action = np.hstack((my_handcards))
obs = {
'position': "",
'x_batch': x_batch.astype(np.float32),
'z_batch': np.array([0,0]),
'legal_actions': bid_legal_actions,
'x_no_action': x_no_action.astype(np.int8),
"bid_info_batch": bid_info_batch.astype(np.int8)
}
return obs
def _get_obs_for_multiply(position, bid_info, hand_cards, landlord_cards):
all_cards = [3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12,
12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17, 20, 30]
num_legal_actions = 3
my_handcards = _cards2array(hand_cards)
my_handcards_batch = np.repeat(my_handcards[np.newaxis, :],
num_legal_actions, axis=0)
other_cards = []
other_cards.extend(all_cards)
for card in hand_cards:
other_cards.remove(card)
other_handcards = _cards2array(other_cards)
other_handcards_batch = np.repeat(other_handcards[np.newaxis, :],
num_legal_actions, axis=0)
position_map = {
"landlord": [1, 0, 0],
"landlord_up": [0, 1, 0],
"landlord_down": [0, 0, 1]
}
position_info = np.array(position_map[position])
position_info_batch = np.repeat(position_info[np.newaxis, :],
num_legal_actions, axis=0)
bid_info = np.array(bid_info).flatten()
bid_info_batch = np.repeat(bid_info[np.newaxis, :],
num_legal_actions, axis=0)
multiply_info = np.array([0, 0, 0])
multiply_info_batch = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
three_landlord_cards = _cards2array(landlord_cards)
three_landlord_cards_batch = np.repeat(three_landlord_cards[np.newaxis, :],
num_legal_actions, axis=0)
last_action = _cards2array([])
last_action_batch = np.repeat(last_action[np.newaxis, :],
num_legal_actions, axis=0)
my_action_batch = np.zeros(my_handcards_batch.shape)
for j in range(num_legal_actions):
my_action_batch[j, :] = _cards2array([])
landlord_num_cards_left = _get_one_hot_array(0, 20)
landlord_num_cards_left_batch = np.repeat(
landlord_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_num_cards_left = _get_one_hot_array(0, 17)
landlord_up_num_cards_left_batch = np.repeat(
landlord_up_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_num_cards_left = _get_one_hot_array(0, 17)
landlord_down_num_cards_left_batch = np.repeat(
landlord_down_num_cards_left[np.newaxis, :],
num_legal_actions, axis=0)
landlord_played_cards = _cards2array([])
landlord_played_cards_batch = np.repeat(
landlord_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_up_played_cards = _cards2array([])
landlord_up_played_cards_batch = np.repeat(
landlord_up_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
landlord_down_played_cards = _cards2array([])
landlord_down_played_cards_batch = np.repeat(
landlord_down_played_cards[np.newaxis, :],
num_legal_actions, axis=0)
bomb_num = _get_one_hot_bomb(0)
bomb_num_batch = np.repeat(
bomb_num[np.newaxis, :],
num_legal_actions, axis=0)
x_batch = np.hstack((position_info_batch,
my_handcards_batch,
other_handcards_batch,
three_landlord_cards_batch,
last_action_batch,
landlord_played_cards_batch,
landlord_up_played_cards_batch,
landlord_down_played_cards_batch,
landlord_num_cards_left_batch,
landlord_up_num_cards_left_batch,
landlord_down_num_cards_left_batch,
bomb_num_batch,
bid_info_batch,
multiply_info_batch,
my_action_batch))
x_no_action = np.hstack((position_info,
my_handcards,
other_handcards,
three_landlord_cards,
last_action,
landlord_played_cards,
landlord_up_played_cards,
landlord_down_played_cards,
landlord_num_cards_left,
landlord_up_num_cards_left,
landlord_down_num_cards_left,
bomb_num))
z = _action_seq_list2array(_process_action_seq([], 32))
z_batch = np.repeat(
z[np.newaxis, :, :],
num_legal_actions, axis=0)
obs = {
'position': "",
'x_batch': x_batch.astype(np.float32),
'z_batch': z_batch.astype(np.float32),
'legal_actions': multiply_info_batch,
'x_no_action': x_no_action.astype(np.int8),
'z': z.astype(np.int8),
"bid_info": bid_info.astype(np.int8),
"multiply_info_batch": multiply_info.astype(np.int8)
}
return obs