Douzero_Resnet/douzero/evaluation/simulation.py

163 lines
6.4 KiB
Python

import multiprocessing as mp
import pickle
import douzero.env.env
from douzero.dmc.models import Model
from douzero.env.game import GameEnv
import torch
import numpy as np
import BidModel
def load_card_play_models(card_play_model_path_dict):
players = {}
for position in ['landlord', 'landlord_up', 'landlord_down']:
if card_play_model_path_dict[position] == 'rlcard':
from .rlcard_agent import RLCardAgent
players[position] = RLCardAgent(position)
elif card_play_model_path_dict[position] == 'random':
from .random_agent import RandomAgent
players[position] = RandomAgent()
else:
from .deep_agent import DeepAgent
players[position] = DeepAgent(position, card_play_model_path_dict[position])
return players
def mp_simulate(card_play_data_list, card_play_model_path_dict, q, output, bid_output, title):
players = load_card_play_models(card_play_model_path_dict)
EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
env = GameEnv(players)
bid_model = None
if bid_output:
model = Model(device=0)
bid_model = model.get_model("bidding")
bid_model_path = card_play_model_path_dict["landlord"].replace("landlord", "bidding")
weights = torch.load(bid_model_path)
bid_model.load_state_dict(weights)
bid_model.eval()
for idx, card_play_data in enumerate(card_play_data_list):
env.card_play_init(card_play_data)
if bid_output:
output = True
bid_results = []
bid_values = []
bid_info_list = [
np.array([[-1,-1,-1],
[-1,-1,-1],
[-1,-1,-1],
[-1,-1,-1]]),
np.array([[0,0,0],
[-1,-1,-1],
[-1,-1,-1],
[-1,-1,-1]]),
np.array([[1,0,0],
[-1,-1,-1],
[-1,-1,-1],
[-1,-1,-1]]),
np.array([[0,0,0],
[0,0,0],
[-1,-1,-1],
[-1,-1,-1]]),
np.array([[0,0,1],
[1,0,0],
[-1,-1,-1],
[-1,-1,-1]]),
np.array([[0,1,0],
[0,0,1],
[1,0,0],
[-1,-1,-1]]),
]
for bid_info in bid_info_list:
bid_obs = douzero.env.env._get_obs_for_bid(1, bid_info, card_play_data["landlord"])
result = bid_model.forward(torch.tensor(bid_obs["z_batch"], device=torch.device("cuda:0")), torch.tensor(bid_obs["x_batch"], device=torch.device("cuda:0")), True)
values = result["values"]
bid = 1 if values[1] > values[0] else 0
bid_results.append(bid)
bid_values.append(values[bid])
result2 = BidModel.predict_env(card_play_data["landlord"])
print("".join([EnvCard2RealCard[c] for c in card_play_data["landlord"]]), end="")
print(" bid: %i|%i%i|%i%i|%i (%.3f %.3f %.3f %.3f %.3f %.3f) %.1f" % (bid_results[0],bid_results[1],bid_results[2],bid_results[3],bid_results[4],bid_results[5],bid_values[0],bid_values[1],bid_values[2],bid_values[3],bid_values[4],bid_values[5], result2))
if output and not bid_output:
print("\nStart ------- " + title)
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord"]]))
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord_down"]]))
print ("".join([EnvCard2RealCard[c] for c in card_play_data["landlord_up"]]))
# print(card_play_data)
count = 0
while not env.game_over and not bid_output:
action = env.step()
if output:
if count % 3 == 2:
end = "\n"
else:
end = " "
if len(action) == 0:
print("Pass", end=end)
else:
print("".join([EnvCard2RealCard[c] for c in action]), end=end)
count+=1
if idx % 10 == 0 and not bid_output:
print("\nindex", idx)
# print("End -------")
env.reset()
q.put((env.num_wins['landlord'],
env.num_wins['farmer'],
env.num_scores['landlord'],
env.num_scores['farmer']
))
def data_allocation_per_worker(card_play_data_list, num_workers):
card_play_data_list_each_worker = [[] for k in range(num_workers)]
for idx, data in enumerate(card_play_data_list):
card_play_data_list_each_worker[idx % num_workers].append(data)
return card_play_data_list_each_worker
def evaluate(landlord, landlord_up, landlord_down, eval_data, num_workers, output, output_bid, title):
with open(eval_data, 'rb') as f:
card_play_data_list = pickle.load(f)
card_play_data_list_each_worker = data_allocation_per_worker(
card_play_data_list, num_workers)
del card_play_data_list
card_play_model_path_dict = {
'landlord': landlord,
'landlord_up': landlord_up,
'landlord_down': landlord_down}
num_landlord_wins = 0
num_farmer_wins = 0
num_landlord_scores = 0
num_farmer_scores = 0
ctx = mp.get_context('spawn')
q = ctx.SimpleQueue()
processes = []
for card_paly_data in card_play_data_list_each_worker:
p = ctx.Process(
target=mp_simulate,
args=(card_paly_data, card_play_model_path_dict, q, output, output_bid, title))
p.start()
processes.append(p)
for p in processes:
p.join()
for i in range(num_workers):
result = q.get()
num_landlord_wins += result[0]
num_farmer_wins += result[1]
num_landlord_scores += result[2]
num_farmer_scores += result[3]
num_total_wins = num_landlord_wins + num_farmer_wins
print('WP results:')
print('landlord : Farmers - {} : {}'.format(num_landlord_wins / num_total_wins, num_farmer_wins / num_total_wins))
print('ADP results:')
print('landlord : Farmers - {} : {}'.format(num_landlord_scores / num_total_wins, 2 * num_farmer_scores / num_total_wins))