2021-05-29 00:25:02 +08:00
|
|
|
|
import torch
|
|
|
|
|
from torch import nn
|
2021-12-18 15:49:37 +08:00
|
|
|
|
import torch.nn.functional as F
|
2021-05-29 00:25:02 +08:00
|
|
|
|
|
|
|
|
|
class LandlordLstmModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.lstm = nn.LSTM(162, 128, batch_first = True)
|
|
|
|
|
self.dense1 = nn.Linear(373 + 128, 512)
|
|
|
|
|
self.dense2 = nn.Linear(512, 512)
|
|
|
|
|
self.dense3 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense6 = nn.Linear(512, 1)
|
|
|
|
|
|
|
|
|
|
def forward(self, z, x):
|
|
|
|
|
lstm_out, (h_n, _) = self.lstm(z)
|
|
|
|
|
lstm_out = lstm_out[:,-1,:]
|
|
|
|
|
x = torch.cat([lstm_out,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
class FarmerLstmModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.lstm = nn.LSTM(162, 128, batch_first = True)
|
|
|
|
|
self.dense1 = nn.Linear(484 + 128 , 512)
|
|
|
|
|
self.dense2 = nn.Linear(512, 512)
|
|
|
|
|
self.dense3 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense6 = nn.Linear(512, 1)
|
|
|
|
|
|
|
|
|
|
def forward(self, z, x):
|
|
|
|
|
lstm_out, (h_n, _) = self.lstm(z)
|
|
|
|
|
lstm_out = lstm_out[:,-1,:]
|
|
|
|
|
x = torch.cat([lstm_out,x], dim=-1)
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
x = torch.relu(x)
|
|
|
|
|
x = self.dense6(x)
|
|
|
|
|
return x
|
|
|
|
|
|
2021-12-18 15:49:37 +08:00
|
|
|
|
|
|
|
|
|
# 用于ResNet18和34的残差块,用的是2个3x3的卷积
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
|
|
|
expansion = 1
|
|
|
|
|
|
|
|
|
|
def __init__(self, in_planes, planes, stride=1):
|
|
|
|
|
super(BasicBlock, self).__init__()
|
|
|
|
|
self.conv1 = nn.Conv1d(in_planes, planes, kernel_size=(3,),
|
|
|
|
|
stride=(stride,), padding=1, bias=False)
|
|
|
|
|
self.bn1 = nn.BatchNorm1d(planes)
|
|
|
|
|
self.conv2 = nn.Conv1d(planes, planes, kernel_size=(3,),
|
|
|
|
|
stride=(1,), padding=1, bias=False)
|
|
|
|
|
self.bn2 = nn.BatchNorm1d(planes)
|
|
|
|
|
self.shortcut = nn.Sequential()
|
|
|
|
|
# 经过处理后的x要与x的维度相同(尺寸和深度)
|
|
|
|
|
# 如果不相同,需要添加卷积+BN来变换为同一维度
|
|
|
|
|
if stride != 1 or in_planes != self.expansion * planes:
|
|
|
|
|
self.shortcut = nn.Sequential(
|
|
|
|
|
nn.Conv1d(in_planes, self.expansion * planes,
|
|
|
|
|
kernel_size=(1,), stride=(stride,), bias=False),
|
|
|
|
|
nn.BatchNorm1d(self.expansion * planes)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
out = F.relu(self.bn1(self.conv1(x)))
|
|
|
|
|
out = self.bn2(self.conv2(out))
|
|
|
|
|
out += self.shortcut(x)
|
|
|
|
|
out = F.relu(out)
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
class GeneralModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
self.in_planes = 80
|
|
|
|
|
#input 1*108*41
|
|
|
|
|
self.conv1 = nn.Conv1d(40, 80, kernel_size=(3,),
|
|
|
|
|
stride=(2,), padding=1, bias=False) #1*108*80
|
|
|
|
|
|
|
|
|
|
self.bn1 = nn.BatchNorm1d(80)
|
|
|
|
|
|
|
|
|
|
self.layer1 = self._make_layer(BasicBlock, 80, 2, stride=2)#1*27*80
|
|
|
|
|
self.layer2 = self._make_layer(BasicBlock, 160, 2, stride=2)#1*14*160
|
|
|
|
|
self.layer3 = self._make_layer(BasicBlock, 320, 2, stride=2)#1*7*320
|
|
|
|
|
self.layer4 = self._make_layer(BasicBlock, 640, 2, stride=2)#1*4*640
|
|
|
|
|
# self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
|
|
|
|
self.linear1 = nn.Linear(640 * BasicBlock.expansion * 4 + 80, 2048)
|
|
|
|
|
self.linear2 = nn.Linear(2048, 1024)
|
|
|
|
|
self.linear3 = nn.Linear(1024, 512)
|
|
|
|
|
self.linear4 = nn.Linear(512, 256)
|
|
|
|
|
self.linear5 = nn.Linear(256, 1)
|
|
|
|
|
|
|
|
|
|
def _make_layer(self, block, planes, num_blocks, stride):
|
|
|
|
|
strides = [stride] + [1] * (num_blocks - 1)
|
|
|
|
|
layers = []
|
|
|
|
|
for stride in strides:
|
|
|
|
|
layers.append(block(self.in_planes, planes, stride))
|
|
|
|
|
self.in_planes = planes * block.expansion
|
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
|
|
|
|
def get_onnx_params(self):
|
|
|
|
|
return {
|
|
|
|
|
'args': (
|
|
|
|
|
torch.tensor(np.zeros([1, 40, 108]), dtype=torch.float32, device='cuda:0'),
|
|
|
|
|
torch.tensor(np.zeros((1, 80)), dtype=torch.float32, device='cuda:0')
|
|
|
|
|
),
|
|
|
|
|
'input_names': ['z_batch','x_batch'],
|
|
|
|
|
'output_names': ['values'],
|
|
|
|
|
'dynamic_axes': {
|
|
|
|
|
'z_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
},
|
|
|
|
|
'x_batch': {
|
|
|
|
|
0: "legal_actions"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def forward(self, z, x):
|
|
|
|
|
out = F.relu(self.bn1(self.conv1(z)))
|
|
|
|
|
out = self.layer1(out)
|
|
|
|
|
out = self.layer2(out)
|
|
|
|
|
out = self.layer3(out)
|
|
|
|
|
out = self.layer4(out)
|
|
|
|
|
out = out.flatten(1,2)
|
|
|
|
|
out = torch.cat([x,out], dim=-1)
|
|
|
|
|
out = F.leaky_relu_(self.linear1(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear2(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear3(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear4(out))
|
|
|
|
|
out = F.leaky_relu_(self.linear5(out))
|
|
|
|
|
return dict(values=out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BidModel(nn.Module):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
|
|
self.dense1 = nn.Linear(208, 512)
|
|
|
|
|
self.dense2 = nn.Linear(512, 512)
|
|
|
|
|
self.dense3 = nn.Linear(512, 512)
|
|
|
|
|
self.dense4 = nn.Linear(512, 512)
|
|
|
|
|
self.dense5 = nn.Linear(512, 512)
|
|
|
|
|
self.dense6 = nn.Linear(512, 1)
|
|
|
|
|
|
|
|
|
|
def forward(self, z, x):
|
|
|
|
|
x = self.dense1(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense2(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense3(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense4(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = self.dense5(x)
|
|
|
|
|
# x = F.relu(x)
|
|
|
|
|
x = F.leaky_relu(x)
|
|
|
|
|
x = self.dense6(x)
|
|
|
|
|
return dict(values=x)
|
|
|
|
|
|
|
|
|
|
|
2021-05-29 00:25:02 +08:00
|
|
|
|
model_dict = {}
|
|
|
|
|
model_dict['landlord'] = LandlordLstmModel
|
|
|
|
|
model_dict['landlord_up'] = FarmerLstmModel
|
|
|
|
|
model_dict['landlord_down'] = FarmerLstmModel
|
2021-12-18 15:49:37 +08:00
|
|
|
|
model_dict_new = {}
|
|
|
|
|
model_dict_new['landlord'] = GeneralModel
|
|
|
|
|
model_dict_new['landlord_up'] = GeneralModel
|
|
|
|
|
model_dict_new['landlord_front'] = GeneralModel
|
|
|
|
|
model_dict_new['landlord_down'] = GeneralModel
|
|
|
|
|
model_dict_new['bidding'] = BidModel
|