import os import json from tqdm import tqdm import numpy as np from .rlcard_wrap import rlcard class Tournament(object): def __init__(self, game, model_ids, evaluate_num=100): """ Defalt for two player games For Dou Dizhu, the two peasants use the same model """ self.game = game self.model_ids = model_ids self.evaluate_num = evaluate_num # Load the models self.models = [rlcard.models.load(model_id) for model_id in model_ids] def launch(self): """ Currently for two-player game only """ model_num = len(self.model_ids) games_data = [] payoffs_data = [] for i in range(model_num): for j in range(model_num): if j == i: continue print(self.game, '-', self.model_ids[i], 'VS', self.model_ids[j]) data, payoffs, wins = tournament(self.game, [self.models[i].agents[0], self.models[j].agents[1]], self.evaluate_num) mean_payoff = np.mean(payoffs) print('Average payoff:', mean_payoff) print() for k in range(len(data)): game_data = {} game_data['name'] = self.game game_data['index'] = k game_data['agent0'] = self.model_ids[i] game_data['agent1'] = self.model_ids[j] game_data['win'] = wins[k] game_data['replay'] = data[k] game_data['payoff'] = payoffs[k] games_data.append(game_data) payoff_data = {} payoff_data['name'] = self.game payoff_data['agent0'] = self.model_ids[i] payoff_data['agent1'] = self.model_ids[j] payoff_data['payoff'] = mean_payoff payoffs_data.append(payoff_data) return games_data, payoffs_data def tournament(game, agents, num): env = rlcard.make(game, config={'allow_raw_data': True}) env.set_agents(agents) payoffs = [] json_data = [] wins = [] for _ in tqdm(range(num)): data = {} data['playerInfo'] = [{'id': i, 'index': i} for i in range(env.player_num)] state, player_id = env.reset() perfect = env.get_perfect_information() data['initHands'] = perfect['hand_cards'] data['moveHistory'] = [[]] while not env.is_over(): action, probs = env.agents[player_id].eval_step(state) history = {} history['playerIdx'] = player_id if env.agents[player_id].use_raw: history['move'] = action else: history['move'] = env._decode_action(action) probabilities = [] for i, a in enumerate(env.actions): if len(probs) == 0: p = -2 elif a in state['raw_legal_actions']: p = probs[i] else: p = -1 probabilities.append({'move':a, 'probability': p}) history['probabilities'] = probabilities data['moveHistory'][0].append(history) state, player_id = env.step(action, env.agents[player_id].use_raw) perfect = env.get_perfect_information() data['publicCard'] = perfect['public_card'] data = json.dumps(data) #data = json.dumps(data, indent=2, sort_keys=True) json_data.append(data) if env.get_payoffs()[0] > 0: wins.append(True) else: wins.append(False) payoffs.append(env.get_payoffs()[0]) return json_data, payoffs, wins if __name__=='__main__': game = 'leduc-holdem' model_ids = ['leduc-holdem-random', 'leduc-holdem-rule-v1', 'leduc-holdem-cfr'] t = Tournament(game, model_ids) games_data = t.launch() print(len(games_data)) print(games_data[0]) #root_path = './models' #agent1 = LeducHoldemDQNModel1(root_path) #agent2 = LeducHoldemRandomModel(root_path) #agent3 = LeducHoldemRuleModel() #agent4 = LeducHoldemCFRModel(root_path) #agent5 = LeducHoldemDQNModel2(root_path) #t = Tournament(agent1, agent2, agent3, agent4, agent5, 'leduc-holdem') ##t.competition() #t.evaluate()