85 lines
2.3 KiB
Python
85 lines
2.3 KiB
Python
''' Leduc Hold 'em rule model
|
|
'''
|
|
import rlcard
|
|
from rlcard.models.model import Model
|
|
|
|
class LeducHoldemRuleAgentV2(object):
|
|
''' Leduc Hold 'em Rule agent version 2
|
|
'''
|
|
def __init__(self):
|
|
self.use_raw = True
|
|
|
|
def step(self, state):
|
|
''' Predict the action when given raw state. A simple rule-based AI.
|
|
Args:
|
|
state (dict): Raw state from the game
|
|
|
|
Returns:
|
|
action (str): Predicted action
|
|
'''
|
|
legal_actions = state['raw_legal_actions']
|
|
state = state['raw_obs']
|
|
hand = state['hand']
|
|
public_card = state['public_card']
|
|
action = 'fold'
|
|
'''
|
|
When having only 2 hand cards at the game start, choose fold to drop terrible cards:
|
|
Acceptable hand cards:
|
|
Pairs
|
|
AK, AQ, AJ, AT
|
|
A9s, A8s, ... A2s(s means flush)
|
|
KQ, KJ, QJ, JT
|
|
Fold all hand types except those mentioned above to save money
|
|
'''
|
|
if public_card:
|
|
if public_card[1] == hand[1]:
|
|
action = 'raise'
|
|
else:
|
|
action = 'fold'
|
|
else:
|
|
if hand[0] == 'K':
|
|
action = 'raise'
|
|
elif hand[0] == 'Q':
|
|
action = 'check'
|
|
else:
|
|
action = 'fold'
|
|
|
|
#return action
|
|
if action in legal_actions:
|
|
return action
|
|
else:
|
|
if action == 'raise':
|
|
return 'call'
|
|
if action == 'check':
|
|
return 'fold'
|
|
if action == 'call':
|
|
return 'raise'
|
|
else:
|
|
return action
|
|
|
|
def eval_step(self, state):
|
|
return self.step(state), []
|
|
|
|
class LeducHoldemRuleModelV2(Model):
|
|
''' Leduc holdem Rule Model version 2
|
|
'''
|
|
|
|
def __init__(self):
|
|
''' Load pretrained model
|
|
'''
|
|
env = rlcard.make('leduc-holdem')
|
|
rule_agent = LeducHoldemRuleAgentV2()
|
|
self.rule_agents = [rule_agent for _ in range(env.player_num)]
|
|
|
|
@property
|
|
def agents(self):
|
|
''' Get a list of agents for each position in a the game
|
|
|
|
Returns:
|
|
agents (list): A list of agents
|
|
|
|
Note: Each agent should be just like RL agent with step and eval_step
|
|
functioning well.
|
|
'''
|
|
return self.rule_agents
|