rlcard-showdown/tournaments/tournament.py

121 lines
4.4 KiB
Python

import os
import json
import tensorflow as tf
import sys
import rlcard
from tqdm import tqdm
from rlcard.agents.nfsp_agent import NFSPAgent
from rlcard.agents.dqn_agent import DQNAgent
from math import log10
# from rlcard.agents.random_agent import RandomAgent
from rlcard.utils.utils import set_global_seed
from rlcard.utils.logger import Logger
from pretrained_models import LeducHoldemDQNModel1, LeducHoldemNFSPModel, LeducHoldemCFRModel, LeducHoldemRandomModel, LeducHoldemRuleModel, LeducHoldemDQNModel2
class Tournament(object):
def __init__(self,
agent1,
agent2,
agent3,
agent4,
agent5,
env_id,
evaluate_num=10000):
set_global_seed(0)
self.env_id = env_id
self.env1 = rlcard.make(env_id, allow_raw_data=True)
self.env2 = rlcard.make(env_id, allow_raw_data=True)
self.env3 = rlcard.make(env_id, allow_raw_data=True)
self.agent1 = agent1.agents[0]
self.agent2 = agent2.agents[0]
self.agent3 = agent3.agents[0]
self.agent4 = agent4.agents[0]
self.agent5 = agent5.agents[0]
self.evaluate_num = evaluate_num
self.env1.set_agents([self.agent1, self.agent2])
self.env2.set_agents([self.agent1, self.agent3])
self.env3.set_agents([self.agent1, self.agent4])
def competition(self):
agent1_wins = 0
agent2_wins = 0
print("########## Play Against Random Agent ##########")
for eval_episode in tqdm(range(self.evaluate_num)):
_, payoffs = self.env1.run(is_training=False)
agent1_wins += payoffs[0]
agent2_wins += payoffs[1]
agent1_rate = agent1_wins / self.evaluate_num
agent2_rate = agent2_wins / self.evaluate_num
print("DQN Agent average peroformance:", agent1_rate)
print("Random Agent avgerage performance:", agent2_rate)
print("\n")
print("########## Play Against Rule-based Agent ##########")
agent1_wins = 0
agent2_wins = 0
for eval_episode in tqdm(range(self.evaluate_num)):
_, payoffs = self.env2.run(is_training=False)
agent1_wins += payoffs[0]
agent2_wins += payoffs[1]
agent1_rate = agent1_wins / self.evaluate_num
agent2_rate = agent2_wins / self.evaluate_num
print("DQN Agent average peroformance:", agent1_rate)
print("Rule-based Agent avgerage performance:", agent2_rate)
print("\n")
agent1_wins = 0
agent2_wins = 0
print("########## Play Against CFR Agent ##########")
for eval_episode in tqdm(range(self.evaluate_num)):
_, payoffs = self.env2.run(is_training=False)
agent1_wins += payoffs[0]
agent2_wins += payoffs[1]
agent1_rate = agent1_wins / self.evaluate_num
agent2_rate = agent2_wins / self.evaluate_num
print("DQN Agent average peroformance:", agent1_rate)
print("CFR Agent avgerage performance:", agent2_rate)
def evaluate(self):
agents = [self.agent1, self.agent2, self.agent3, self.agent4, self.agent5]
for a1 in agents:
avg_performance = 0.0
print("########### Evaluating "+ str(a1) +" #########")
for a2 in agents:
if a1 == a2:
continue
agent1_wins = 0
env = rlcard.make(self.env_id, allow_raw_data=True)
env.set_agents([a1, a2])
for eval_episode in range(self.evaluate_num):
_, payoffs = env.run(is_training=False)
agent1_wins += payoffs[0]
agent1_rate = agent1_wins / self.evaluate_num
if agent1_rate > 0:
avg_performance += 1.0
print("Against "+str(a2)+":", agent1_rate)
avg_performance /= len(agents)-1
print("Average Performance:", avg_performance)
print("\n")
if __name__=='__main__':
root_path = './models'
agent1 = LeducHoldemDQNModel1(root_path)
agent2 = LeducHoldemRandomModel(root_path)
agent3 = LeducHoldemRuleModel()
agent4 = LeducHoldemCFRModel(root_path)
agent5 = LeducHoldemDQNModel2(root_path)
t = Tournament(agent1, agent2, agent3, agent4, agent5, 'leduc-holdem')
#t.competition()
t.evaluate()