rlcard-showdown/server/tournament/tournament.py

118 lines
4.3 KiB
Python

import os
import json
from tqdm import tqdm
import numpy as np
from .rlcard_wrap import rlcard
class Tournament(object):
def __init__(self, game, model_ids, evaluate_num=100):
""" Defalt for two player games
For Dou Dizhu, the two peasants use the same model
"""
self.game = game
self.model_ids = model_ids
self.evaluate_num = evaluate_num
# Load the models
self.models = [rlcard.models.load(model_id) for model_id in model_ids]
def launch(self):
""" Currently for two-player game only
"""
model_num = len(self.model_ids)
games_data = []
payoffs_data = []
for i in range(model_num):
for j in range(model_num):
if j == i:
continue
print(self.game, '-', self.model_ids[i], 'VS', self.model_ids[j])
data, payoffs, wins = tournament(self.game, [self.models[i].agents[0], self.models[j].agents[1]], self.evaluate_num)
mean_payoff = np.mean(payoffs)
print('Average payoff:', mean_payoff)
print()
for k in range(len(data)):
game_data = {}
game_data['name'] = self.game
game_data['index'] = k
game_data['agent0'] = self.model_ids[i]
game_data['agent1'] = self.model_ids[j]
game_data['win'] = wins[k]
game_data['replay'] = data[k]
game_data['payoff'] = payoffs[k]
games_data.append(game_data)
payoff_data = {}
payoff_data['name'] = self.game
payoff_data['agent0'] = self.model_ids[i]
payoff_data['agent1'] = self.model_ids[j]
payoff_data['payoff'] = mean_payoff
payoffs_data.append(payoff_data)
return games_data, payoffs_data
def tournament(game, agents, num):
env = rlcard.make(game, config={'allow_raw_data': True})
env.set_agents(agents)
payoffs = []
json_data = []
wins = []
for _ in tqdm(range(num)):
data = {}
data['playerInfo'] = [{'id': i, 'index': i} for i in range(env.player_num)]
state, player_id = env.reset()
perfect = env.get_perfect_information()
data['initHands'] = perfect['hand_cards']
data['moveHistory'] = [[]]
while not env.is_over():
action, probs = env.agents[player_id].eval_step(state)
history = {}
history['playerIdx'] = player_id
if env.agents[player_id].use_raw:
history['move'] = action
else:
history['move'] = env._decode_action(action)
probabilities = []
for i, a in enumerate(env.actions):
if len(probs) == 0:
p = -2
elif a in state['raw_legal_actions']:
p = probs[i]
else:
p = -1
probabilities.append({'move':a, 'probability': p})
history['probabilities'] = probabilities
data['moveHistory'][0].append(history)
state, player_id = env.step(action, env.agents[player_id].use_raw)
perfect = env.get_perfect_information()
data['publicCard'] = perfect['public_card']
data = json.dumps(data)
#data = json.dumps(data, indent=2, sort_keys=True)
json_data.append(data)
if env.get_payoffs()[0] > 0:
wins.append(True)
else:
wins.append(False)
payoffs.append(env.get_payoffs()[0])
return json_data, payoffs, wins
if __name__=='__main__':
game = 'leduc-holdem'
model_ids = ['leduc-holdem-random', 'leduc-holdem-rule-v1', 'leduc-holdem-cfr']
t = Tournament(game, model_ids)
games_data = t.launch()
print(len(games_data))
print(games_data[0])
#root_path = './models'
#agent1 = LeducHoldemDQNModel1(root_path)
#agent2 = LeducHoldemRandomModel(root_path)
#agent3 = LeducHoldemRuleModel()
#agent4 = LeducHoldemCFRModel(root_path)
#agent5 = LeducHoldemDQNModel2(root_path)
#t = Tournament(agent1, agent2, agent3, agent4, agent5, 'leduc-holdem')
##t.competition()
#t.evaluate()