47 lines
1.2 KiB
Python
47 lines
1.2 KiB
Python
# A wrap for rlcard
|
|
# Here, we include a random model as the default baseline
|
|
import rlcard
|
|
from rlcard.agents import RandomAgent
|
|
from rlcard.models.model import Model
|
|
|
|
class DoudizhuRandomModelSpec(object):
|
|
def __init__(self):
|
|
self.model_id = 'doudizhu-random'
|
|
self._entry_point = DoudizhuRandomModel
|
|
|
|
def load(self):
|
|
model = self._entry_point()
|
|
return model
|
|
|
|
class DoudizhuRandomModel(Model):
|
|
''' A random model
|
|
'''
|
|
|
|
def __init__(self):
|
|
''' Load random model
|
|
'''
|
|
env = rlcard.make('doudizhu')
|
|
self.agent = RandomAgent(num_actions=env.num_actions)
|
|
self.num_players = env.num_players
|
|
|
|
@property
|
|
def agents(self):
|
|
''' Get a list of agents for each position in a the game
|
|
|
|
Returns:
|
|
agents (list): A list of agents
|
|
|
|
Note: Each agent should be just like RL agent with step and eval_step
|
|
functioning well.
|
|
'''
|
|
return [self.agent for _ in range(self.num_players)]
|
|
|
|
@property
|
|
def use_raw(self):
|
|
''' Indicate whether use raw state and action
|
|
|
|
Returns:
|
|
use_raw (boolean): True if using raw state and action
|
|
'''
|
|
return False
|