DouZero_For_HLDDZ_FullAuto/douzero/evaluation/simulation.py

74 lines
3.3 KiB
Python
Raw Normal View History

2021-07-28 19:47:43 +08:00
from douzero.env.game import GameEnv
from .deep_agent import DeepAgent
EnvCard2RealCard = {3: '3', 4: '4', 5: '5', 6: '6', 7: '7',
8: '8', 9: '9', 10: 'T', 11: 'J', 12: 'Q',
13: 'K', 14: 'A', 17: '2', 20: 'X', 30: 'D'}
RealCard2EnvCard = {'3': 3, '4': 4, '5': 5, '6': 6, '7': 7,
'8': 8, '9': 9, 'T': 10, 'J': 11, 'Q': 12,
'K': 13, 'A': 14, '2': 17, 'X': 20, 'D': 30}
AllEnvCard = [3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7,
8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12,
12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 17, 17, 17, 17, 20, 30]
def evaluate(landlord, landlord_up, landlord_down):
# 输入玩家的牌
user_hand_cards_real = input("请输入你的手牌, 例如 333456789TJQKA2XD:")
# user_hand_cards_real = "34666777899TJJKA22XD"
use_hand_cards_env = [RealCard2EnvCard[c] for c in list(user_hand_cards_real)]
# 输入玩家角色
user_position_code = int(input("请输入你的角色[0地主上家, 1地主, 2地主下家]:"))
# user_position_code = 1
user_position = ['landlord_up', 'landlord', 'landlord_down'][user_position_code]
# 输入三张底牌
three_landlord_cards_real = input("请输入三张底牌, 例如 2XD:")
# three_landlord_cards_real = "2XD"
three_landlord_cards_env = [RealCard2EnvCard[c] for c in list(three_landlord_cards_real)]
# 整副牌减去玩家手上的牌,就是其他人的手牌,再分配给另外两个角色如何分配对AI判断没有影响
other_hand_cards = []
for i in set(AllEnvCard):
other_hand_cards.extend([i] * (AllEnvCard.count(i) - use_hand_cards_env.count(i)))
card_play_data_list = [{}]
card_play_data_list[0].update({
'three_landlord_cards': three_landlord_cards_env,
['landlord_up', 'landlord', 'landlord_down'][(user_position_code + 0) % 3]: use_hand_cards_env,
['landlord_up', 'landlord', 'landlord_down'][(user_position_code + 1) % 3]: other_hand_cards[0:17] if (user_position_code + 1) % 3 != 1 else other_hand_cards[17:],
['landlord_up', 'landlord', 'landlord_down'][(user_position_code + 2) % 3]: other_hand_cards[0:17] if (user_position_code + 1) % 3 == 1 else other_hand_cards[17:]
})
# 生成手牌结束,校验手牌数量
if len(card_play_data_list[0]["three_landlord_cards"]) != 3:
print("底牌必须是3张\n")
return
if len(card_play_data_list[0]["landlord_up"]) != 17 or \
len(card_play_data_list[0]["landlord_down"]) != 17 or \
len(card_play_data_list[0]["landlord"]) != 20:
print("初始手牌数目有误\n")
return
# print(card_play_data_list)
card_play_model_path_dict = {
'landlord': landlord,
'landlord_up': landlord_up,
'landlord_down': landlord_down}
print("创建代表玩家的AI...")
players = {}
players[user_position] = DeepAgent(user_position, card_play_model_path_dict[user_position])
env = GameEnv(players)
for idx, card_play_data in enumerate(card_play_data_list):
env.card_play_init(card_play_data)
print("开始出牌\n")
while not env.game_over:
env.step()
print("{}胜,本局结束!\n".format("农民" if env.winner == "farmer" else "地主"))
env.reset()