# -*- coding: utf-8 -*- # Created by: Vincentzyx import os import torch from torch import nn from torch.utils.data import DataLoader from torch.utils.data.dataset import Dataset import time def EnvToOnehot(cards): Env2IdxMap = {3:0,4:1,5:2,6:3,7:4,8:5,9:6,10:7,11:8,12:9,13:10,14:11,17:12,20:13,30:14} cards = [Env2IdxMap[i] for i in cards] Onehot = torch.zeros((4,15)) for i in range(0, 15): Onehot[:cards.count(i),i] = 1 return Onehot def RealToOnehot(cards): RealCard2EnvCard = {'3': 0, '4': 1, '5': 2, '6': 3, '7': 4, '8': 5, '9': 6, 'T': 7, 'J': 8, 'Q': 9, 'K': 10, 'A': 11, '2': 12, 'X': 13, 'D': 14} cards = [RealCard2EnvCard[c] for c in cards] Onehot = torch.zeros((4,15)) for i in range(0, 15): Onehot[:cards.count(i),i] = 1 return Onehot class Net(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(60, 512) self.fc2 = nn.Linear(512, 512) self.fc3 = nn.Linear(512, 512) self.fc4 = nn.Linear(512, 512) self.fc5 = nn.Linear(512, 512) self.fc6 = nn.Linear(512, 1) self.dropout5 = nn.Dropout(0.5) self.dropout3 = nn.Dropout(0.3) self.dropout1 = nn.Dropout(0.1) def forward(self, input): x = self.fc1(input) x = torch.relu(self.dropout3(self.fc2(x))) x = torch.relu(self.dropout5(self.fc3(x))) x = torch.relu(self.dropout5(self.fc4(x))) x = torch.relu(self.dropout5(self.fc5(x))) x = self.fc6(x) return x net = Net() net.eval() if os.path.exists("landlord_weights.pkl"): if torch.cuda.is_available(): net.load_state_dict(torch.load('landlord_weights.pkl')) else: net.load_state_dict(torch.load('landlord_weights.pkl', map_location=torch.device("cpu"))) else: print("landlord_weights.pkl not found") def predict(cards): cards_onehot = torch.flatten(RealToOnehot(cards)) y_predict = net(cards_onehot) return y_predict[0].item() * 100