473 lines
16 KiB
Python
473 lines
16 KiB
Python
"""
|
||
This file includes the torch models. We wrap the three
|
||
models into one class for convenience.
|
||
"""
|
||
|
||
import numpy as np
|
||
|
||
import torch
|
||
from torch import nn
|
||
import torch.nn.functional as F
|
||
|
||
class LandlordLstmModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.lstm = nn.LSTM(162, 128, batch_first=True)
|
||
self.dense1 = nn.Linear(373 + 128, 512)
|
||
self.dense2 = nn.Linear(512, 512)
|
||
self.dense3 = nn.Linear(512, 512)
|
||
self.dense4 = nn.Linear(512, 512)
|
||
self.dense5 = nn.Linear(512, 512)
|
||
self.dense6 = nn.Linear(512, 1)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None):
|
||
lstm_out, (h_n, _) = self.lstm(z)
|
||
lstm_out = lstm_out[:,-1,:]
|
||
x = torch.cat([lstm_out,x], dim=-1)
|
||
x = self.dense1(x)
|
||
x = torch.relu(x)
|
||
x = self.dense2(x)
|
||
x = torch.relu(x)
|
||
x = self.dense3(x)
|
||
x = torch.relu(x)
|
||
x = self.dense4(x)
|
||
x = torch.relu(x)
|
||
x = self.dense5(x)
|
||
x = torch.relu(x)
|
||
x = self.dense6(x)
|
||
if return_value:
|
||
return dict(values=x)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(x.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(x,dim=0)[0]
|
||
return dict(action=action)
|
||
|
||
class FarmerLstmModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.lstm = nn.LSTM(162, 128, batch_first=True)
|
||
self.dense1 = nn.Linear(484 + 128, 512)
|
||
self.dense2 = nn.Linear(512, 512)
|
||
self.dense3 = nn.Linear(512, 512)
|
||
self.dense4 = nn.Linear(512, 512)
|
||
self.dense5 = nn.Linear(512, 512)
|
||
self.dense6 = nn.Linear(512, 1)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None):
|
||
lstm_out, (h_n, _) = self.lstm(z)
|
||
lstm_out = lstm_out[:,-1,:]
|
||
x = torch.cat([lstm_out,x], dim=-1)
|
||
x = self.dense1(x)
|
||
x = torch.relu(x)
|
||
x = self.dense2(x)
|
||
x = torch.relu(x)
|
||
x = self.dense3(x)
|
||
x = torch.relu(x)
|
||
x = self.dense4(x)
|
||
x = torch.relu(x)
|
||
x = self.dense5(x)
|
||
x = torch.relu(x)
|
||
x = self.dense6(x)
|
||
if return_value:
|
||
return dict(values=x)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(x.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(x,dim=0)[0]
|
||
return dict(action=action)
|
||
|
||
class LandlordLstmNewModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.lstm = nn.LSTM(162, 128, batch_first=True)
|
||
self.dense1 = nn.Linear(373 + 128, 512)
|
||
self.dense2 = nn.Linear(512, 512)
|
||
self.dense3 = nn.Linear(512, 512)
|
||
self.dense4 = nn.Linear(512, 512)
|
||
self.dense5 = nn.Linear(512, 512)
|
||
self.dense6 = nn.Linear(512, 1)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None):
|
||
lstm_out, (h_n, _) = self.lstm(z)
|
||
lstm_out = lstm_out[:,-1,:]
|
||
x = torch.cat([lstm_out,x], dim=-1)
|
||
x = self.dense1(x)
|
||
x = torch.relu(x)
|
||
x = self.dense2(x)
|
||
x = torch.relu(x)
|
||
x = self.dense3(x)
|
||
x = torch.relu(x)
|
||
x = self.dense4(x)
|
||
x = torch.relu(x)
|
||
x = self.dense5(x)
|
||
x = torch.relu(x)
|
||
x = self.dense6(x)
|
||
if return_value:
|
||
return dict(values=x)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(x.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(x,dim=0)[0]
|
||
return dict(action=action)
|
||
|
||
class FarmerLstmNewModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.lstm = nn.LSTM(162, 128, batch_first=True)
|
||
self.dense1 = nn.Linear(484 + 128, 512)
|
||
self.dense2 = nn.Linear(512, 512)
|
||
self.dense3 = nn.Linear(512, 512)
|
||
self.dense4 = nn.Linear(512, 512)
|
||
self.dense5 = nn.Linear(512, 512)
|
||
self.dense6 = nn.Linear(512, 1)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None):
|
||
lstm_out, (h_n, _) = self.lstm(z)
|
||
lstm_out = lstm_out[:,-1,:]
|
||
x = torch.cat([lstm_out,x], dim=-1)
|
||
x = self.dense1(x)
|
||
x = torch.relu(x)
|
||
x = self.dense2(x)
|
||
x = torch.relu(x)
|
||
x = self.dense3(x)
|
||
x = torch.relu(x)
|
||
x = self.dense4(x)
|
||
x = torch.relu(x)
|
||
x = self.dense5(x)
|
||
x = torch.relu(x)
|
||
x = self.dense6(x)
|
||
if return_value:
|
||
return dict(values=x)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(x.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(x,dim=0)[0]
|
||
return dict(action=action)
|
||
|
||
class GeneralModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
# input: B * 32 * 57
|
||
# self.lstm = nn.LSTM(162, 512, batch_first=True)
|
||
self.conv_z_1 = torch.nn.Sequential(
|
||
nn.Conv2d(1, 64, kernel_size=(1,57)), # B * 1 * 64 * 32
|
||
nn.ReLU(inplace=True),
|
||
nn.BatchNorm2d(64),
|
||
)
|
||
# Squeeze(-1) B * 64 * 16
|
||
self.conv_z_2 = torch.nn.Sequential(
|
||
nn.Conv1d(64, 128, kernel_size=(5,), padding=2), # 128 * 16
|
||
nn.ReLU(inplace=True),
|
||
nn.BatchNorm1d(128),
|
||
)
|
||
self.conv_z_3 = torch.nn.Sequential(
|
||
nn.Conv1d(128, 256, kernel_size=(3,), padding=1), # 256 * 8
|
||
nn.ReLU(inplace=True),
|
||
nn.BatchNorm1d(256),
|
||
|
||
)
|
||
self.conv_z_4 = torch.nn.Sequential(
|
||
nn.Conv1d(256, 512, kernel_size=(3,), padding=1), # 512 * 4
|
||
nn.ReLU(inplace=True),
|
||
nn.BatchNorm1d(512),
|
||
|
||
)
|
||
|
||
self.dense1 = nn.Linear(519 + 1024, 1024)
|
||
self.dense2 = nn.Linear(1024, 512)
|
||
self.dense3 = nn.Linear(512, 512)
|
||
self.dense4 = nn.Linear(512, 512)
|
||
self.dense5 = nn.Linear(512, 512)
|
||
self.dense6 = nn.Linear(512, 1)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None, debug=False):
|
||
z = z.unsqueeze(1)
|
||
z = self.conv_z_1(z)
|
||
z = z.squeeze(-1)
|
||
z = torch.max_pool1d(z, 2)
|
||
z = self.conv_z_2(z)
|
||
z = torch.max_pool1d(z, 2)
|
||
z = self.conv_z_3(z)
|
||
z = torch.max_pool1d(z, 2)
|
||
z = self.conv_z_4(z)
|
||
z = torch.max_pool1d(z, 2)
|
||
z = z.flatten(1,2)
|
||
x = torch.cat([z,x], dim=-1)
|
||
x = self.dense1(x)
|
||
x = torch.relu(x)
|
||
x = self.dense2(x)
|
||
x = torch.relu(x)
|
||
x = self.dense3(x)
|
||
x = torch.relu(x)
|
||
x = self.dense4(x)
|
||
x = torch.relu(x)
|
||
x = self.dense5(x)
|
||
x = torch.relu(x)
|
||
x = self.dense6(x)
|
||
if return_value:
|
||
return dict(values=x)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(x.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(x,dim=0)[0]
|
||
return dict(action=action, max_value=torch.max(x))
|
||
|
||
|
||
# 用于ResNet18和34的残差块,用的是2个3x3的卷积
|
||
class BasicBlock(nn.Module):
|
||
expansion = 1
|
||
|
||
def __init__(self, in_planes, planes, stride=1):
|
||
super(BasicBlock, self).__init__()
|
||
self.conv1 = nn.Conv1d(in_planes, planes, kernel_size=(3,),
|
||
stride=(stride,), padding=1, bias=False)
|
||
self.bn1 = nn.BatchNorm1d(planes)
|
||
self.conv2 = nn.Conv1d(planes, planes, kernel_size=(3,),
|
||
stride=(1,), padding=1, bias=False)
|
||
self.bn2 = nn.BatchNorm1d(planes)
|
||
self.shortcut = nn.Sequential()
|
||
# 经过处理后的x要与x的维度相同(尺寸和深度)
|
||
# 如果不相同,需要添加卷积+BN来变换为同一维度
|
||
if stride != 1 or in_planes != self.expansion * planes:
|
||
self.shortcut = nn.Sequential(
|
||
nn.Conv1d(in_planes, self.expansion * planes,
|
||
kernel_size=(1,), stride=(stride,), bias=False),
|
||
nn.BatchNorm1d(self.expansion * planes)
|
||
)
|
||
|
||
def forward(self, x):
|
||
out = F.relu(self.bn1(self.conv1(x)))
|
||
out = self.bn2(self.conv2(out))
|
||
out += self.shortcut(x)
|
||
out = F.relu(out)
|
||
return out
|
||
|
||
|
||
class ResnetModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.in_planes = 80
|
||
#input 1*54*41
|
||
self.conv1 = nn.Conv1d(40, 80, kernel_size=(3,),
|
||
stride=(2,), padding=1, bias=False) #1*27*80
|
||
|
||
self.bn1 = nn.BatchNorm1d(80)
|
||
|
||
self.layer1 = self._make_layer(BasicBlock, 80, 2, stride=2)#1*14*80
|
||
self.layer2 = self._make_layer(BasicBlock, 160, 2, stride=2)#1*7*160
|
||
self.layer3 = self._make_layer(BasicBlock, 320, 2, stride=2)#1*4*320
|
||
# self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
|
||
self.linear1 = nn.Linear(320 * BasicBlock.expansion * 4 + 15 * 4, 1024)
|
||
self.linear2 = nn.Linear(1024, 512)
|
||
self.linear3 = nn.Linear(512, 256)
|
||
self.linear4 = nn.Linear(256, 1)
|
||
|
||
def _make_layer(self, block, planes, num_blocks, stride):
|
||
strides = [stride] + [1] * (num_blocks - 1)
|
||
layers = []
|
||
for stride in strides:
|
||
layers.append(block(self.in_planes, planes, stride))
|
||
self.in_planes = planes * block.expansion
|
||
return nn.Sequential(*layers)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None, debug=False):
|
||
out = F.relu(self.bn1(self.conv1(z)))
|
||
out = self.layer1(out)
|
||
out = self.layer2(out)
|
||
out = self.layer3(out)
|
||
out = out.flatten(1,2)
|
||
out = torch.cat([x,x,x,x,out], dim=-1)
|
||
out = F.leaky_relu_(self.linear1(out))
|
||
out = F.leaky_relu_(self.linear2(out))
|
||
out = F.leaky_relu_(self.linear3(out))
|
||
out = F.leaky_relu_(self.linear4(out))
|
||
if return_value:
|
||
return dict(values=out)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(out.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(out,dim=0)[0]
|
||
return dict(action=action, max_value=torch.max(out))
|
||
|
||
|
||
|
||
|
||
|
||
class BidModel(nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
|
||
self.dense1 = nn.Linear(114, 512)
|
||
self.dense2 = nn.Linear(512, 512)
|
||
self.dense3 = nn.Linear(512, 512)
|
||
self.dense4 = nn.Linear(512, 512)
|
||
self.dense5 = nn.Linear(512, 512)
|
||
self.dense6 = nn.Linear(512, 1)
|
||
|
||
def forward(self, z, x, return_value=False, flags=None, debug=False):
|
||
x = self.dense1(x)
|
||
x = F.leaky_relu(x)
|
||
# x = F.relu(x)
|
||
x = self.dense2(x)
|
||
x = F.leaky_relu(x)
|
||
# x = F.relu(x)
|
||
x = self.dense3(x)
|
||
x = F.leaky_relu(x)
|
||
# x = F.relu(x)
|
||
x = self.dense4(x)
|
||
x = F.leaky_relu(x)
|
||
# x = F.relu(x)
|
||
x = self.dense5(x)
|
||
# x = F.relu(x)
|
||
x = F.leaky_relu(x)
|
||
x = self.dense6(x)
|
||
if return_value:
|
||
return dict(values=x)
|
||
else:
|
||
if flags is not None and flags.exp_epsilon > 0 and np.random.rand() < flags.exp_epsilon:
|
||
action = torch.randint(x.shape[0], (1,))[0]
|
||
else:
|
||
action = torch.argmax(x,dim=0)[0]
|
||
return dict(action=action, max_value=torch.max(x))
|
||
|
||
|
||
# Model dict is only used in evaluation but not training
|
||
model_dict = {}
|
||
model_dict['landlord'] = LandlordLstmModel
|
||
model_dict['landlord_up'] = FarmerLstmModel
|
||
model_dict['landlord_down'] = FarmerLstmModel
|
||
model_dict_resnet = {}
|
||
model_dict_resnet['landlord'] = ResnetModel
|
||
model_dict_resnet['landlord_up'] = ResnetModel
|
||
model_dict_resnet['landlord_down'] = ResnetModel
|
||
model_dict_resnet['bidding'] = BidModel
|
||
model_dict_general = {}
|
||
model_dict_general['landlord'] = GeneralModel
|
||
model_dict_general['landlord_up'] = GeneralModel
|
||
model_dict_general['landlord_down'] = GeneralModel
|
||
model_dict_general['bidding'] = BidModel
|
||
|
||
|
||
class General_Model:
|
||
"""
|
||
The wrapper for the three models. We also wrap several
|
||
interfaces such as share_memory, eval, etc.
|
||
"""
|
||
def __init__(self, device=0):
|
||
self.models = {}
|
||
if not device == "cpu":
|
||
device = 'cuda:' + str(device)
|
||
# model = GeneralModel().to(torch.device(device))
|
||
self.models['landlord'] = GeneralModel1().to(torch.device(device))
|
||
self.models['landlord_up'] = GeneralModel1().to(torch.device(device))
|
||
self.models['landlord_down'] = GeneralModel1().to(torch.device(device))
|
||
self.models['bidding'] = BidModel().to(torch.device(device))
|
||
|
||
def forward(self, position, z, x, training=False, flags=None, debug=False):
|
||
model = self.models[position]
|
||
return model.forward(z, x, training, flags, debug)
|
||
|
||
def share_memory(self):
|
||
self.models['landlord'].share_memory()
|
||
self.models['landlord_up'].share_memory()
|
||
self.models['landlord_down'].share_memory()
|
||
self.models['bidding'].share_memory()
|
||
|
||
def eval(self):
|
||
self.models['landlord'].eval()
|
||
self.models['landlord_up'].eval()
|
||
self.models['landlord_down'].eval()
|
||
self.models['bidding'].eval()
|
||
|
||
def parameters(self, position):
|
||
return self.models[position].parameters()
|
||
|
||
def get_model(self, position):
|
||
return self.models[position]
|
||
|
||
def get_models(self):
|
||
return self.models
|
||
|
||
class OldModel:
|
||
"""
|
||
The wrapper for the three models. We also wrap several
|
||
interfaces such as share_memory, eval, etc.
|
||
"""
|
||
def __init__(self, device=0):
|
||
self.models = {}
|
||
if not device == "cpu":
|
||
device = 'cuda:' + str(device)
|
||
self.models['landlord'] = LandlordLstmModel().to(torch.device(device))
|
||
self.models['landlord_up'] = FarmerLstmModel().to(torch.device(device))
|
||
self.models['landlord_down'] = FarmerLstmModel().to(torch.device(device))
|
||
|
||
def forward(self, position, z, x, training=False, flags=None):
|
||
model = self.models[position]
|
||
return model.forward(z, x, training, flags)
|
||
|
||
def share_memory(self):
|
||
self.models['landlord'].share_memory()
|
||
self.models['landlord_up'].share_memory()
|
||
self.models['landlord_down'].share_memory()
|
||
|
||
def eval(self):
|
||
self.models['landlord'].eval()
|
||
self.models['landlord_up'].eval()
|
||
self.models['landlord_down'].eval()
|
||
|
||
def parameters(self, position):
|
||
return self.models[position].parameters()
|
||
|
||
def get_model(self, position):
|
||
return self.models[position]
|
||
|
||
def get_models(self):
|
||
return self.models
|
||
|
||
|
||
class Model:
|
||
"""
|
||
The wrapper for the three models. We also wrap several
|
||
interfaces such as share_memory, eval, etc.
|
||
"""
|
||
def __init__(self, device=0):
|
||
self.models = {}
|
||
if not device == "cpu":
|
||
device = 'cuda:' + str(device)
|
||
# model = GeneralModel().to(torch.device(device))
|
||
self.models['landlord'] = ResnetModel().to(torch.device(device))
|
||
self.models['landlord_up'] = ResnetModel().to(torch.device(device))
|
||
self.models['landlord_down'] = ResnetModel().to(torch.device(device))
|
||
self.models['bidding'] = BidModel().to(torch.device(device))
|
||
|
||
def forward(self, position, z, x, training=False, flags=None, debug=False):
|
||
model = self.models[position]
|
||
return model.forward(z, x, training, flags, debug)
|
||
|
||
def share_memory(self):
|
||
self.models['landlord'].share_memory()
|
||
self.models['landlord_up'].share_memory()
|
||
self.models['landlord_down'].share_memory()
|
||
self.models['bidding'].share_memory()
|
||
|
||
def eval(self):
|
||
self.models['landlord'].eval()
|
||
self.models['landlord_up'].eval()
|
||
self.models['landlord_down'].eval()
|
||
self.models['bidding'].eval()
|
||
|
||
def parameters(self, position):
|
||
return self.models[position].parameters()
|
||
|
||
def get_model(self, position):
|
||
return self.models[position]
|
||
|
||
def get_models(self):
|
||
return self.models |