zoneminder/src/zm_image.cpp

1470 lines
34 KiB
C++
Raw Normal View History

//
// ZoneMinder Image Class Implementation, $Date$, $Revision$
// Copyright (C) 2003, 2004, 2005, 2006 Philip Coombes
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
#include "zm.h"
#include "zm_font.h"
#include "zm_image.h"
#include <sys/stat.h>
#define ABSDIFF(a,b) (((a)<(b))?((b)-(a)):((a)-(b)))
bool Image::initialised = false;
unsigned char *Image::abs_table;
unsigned char *Image::y_r_table;
unsigned char *Image::y_g_table;
unsigned char *Image::y_b_table;
Image::BlendTablePtr Image::blend_tables[101];
jpeg_compress_struct *Image::jpg_ccinfo[100] = { 0 };
jpeg_decompress_struct *Image::jpg_dcinfo = 0;
struct zm_error_mgr Image::jpg_err;
void Image::Initialise()
{
initialised = true;
abs_table = new unsigned char[(6*255)+1];
abs_table += (3*255);
y_r_table = new unsigned char[511];
y_r_table += 255;
y_g_table = new unsigned char[511];
y_g_table += 255;
y_b_table = new unsigned char[511];
y_b_table += 255;
for ( int i = -(3*255); i <= (3*255); i++ )
{
abs_table[i] = abs(i);
}
for ( int i = -255; i <= 255; i++ )
{
y_r_table[i] = (2990*abs(i))/10000;
y_g_table[i] = (5670*abs(i))/10000;
y_b_table[i] = (1140*abs(i))/10000;
//Info(( "I:%d, R:%d, G:%d, B:%d", i, y_r_table[i], y_g_table[i], y_b_table[i] ));
}
for ( int i = 0; i <= 100; i++ )
{
blend_tables[i] = 0;
}
jpg_err.pub.error_exit = zm_jpeg_error_exit;
jpg_err.pub.emit_message = zm_jpeg_emit_message;
}
Image::BlendTablePtr Image::GetBlendTable( int transparency )
{
BlendTablePtr blend_ptr = blend_tables[transparency];
if ( !blend_ptr )
{
blend_ptr = blend_tables[transparency] = new BlendTable[1];
//Info(( "Generating blend table for transparency %d", transparency ));
int opacity = 100-transparency;
//int round_up = 50/transparency;
for ( int i = 0; i < 256; i++ )
{
for ( int j = 0; j < 256; j++ )
{
//(*blend_ptr)[i][j] = (JSAMPLE)((((i + round_up) * opacity)+((j + round_up) * transparency))/100);
(*blend_ptr)[i][j] = (JSAMPLE)(((i * opacity)+(j * transparency))/100);
//printf( "I:%d, J:%d, B:%d\n", i, j, (*blend_ptr)[i][j] );
}
}
}
return( blend_ptr );
}
Image *Image::HighlightEdges( Rgb colour, const Box *limits )
{
assert( colours = 1 );
Image *high_image = new Image( width, height, 3 );
int lo_x = limits?limits->Lo().X():0;
int lo_y = limits?limits->Lo().Y():0;
int hi_x = limits?limits->Hi().X():width-1;
int hi_y = limits?limits->Hi().Y():height-1;
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[(y*width)+lo_x];
unsigned char *phigh = high_image->Buffer( lo_x, y );
for ( int x = lo_x; x <= hi_x; x++, p++, phigh += 3 )
{
bool edge = false;
if ( *p )
{
if ( !edge && x > 0 && !*(p-1) ) edge = true;
if ( !edge && x < (width-1) && !*(p+1) ) edge = true;
if ( !edge && y > 0 && !*(p-width) ) edge = true;
if ( !edge && y < (height-1) && !*(p+width) ) edge = true;
}
if ( edge )
{
RED(phigh) = RGB_RED_VAL(colour);
GREEN(phigh) = RGB_GREEN_VAL(colour);
BLUE(phigh) = RGB_BLUE_VAL(colour);
}
}
}
return( high_image );
}
bool Image::ReadRaw( const char *filename )
{
FILE *infile;
if ( (infile = fopen( filename, "rb" )) == NULL )
{
Error(( "Can't open %s: %s", filename, strerror(errno) ));
return( false );
}
struct stat statbuf;
if ( fstat( fileno(infile), &statbuf ) < 0 )
{
Error(( "Can't fstat %s: %s", filename, strerror(errno) ));
return( false );
}
if ( statbuf.st_size != size )
{
Error(( "Raw file size mismatch, expected %d bytes, found %d", size, statbuf.st_size ));
return( false );
}
fread( buffer, size, 1, infile );
fclose( infile );
return( true );
}
bool Image::WriteRaw( const char *filename ) const
{
FILE *outfile;
if ( (outfile = fopen( filename, "wb" )) == NULL )
{
Error(( "Can't open %s: %s", filename, strerror(errno) ));
return( false );
}
fwrite( buffer, size, 1, outfile );
fclose( outfile );
return( true );
}
bool Image::ReadJpeg( const char *filename )
{
struct jpeg_decompress_struct *cinfo = jpg_dcinfo;
if ( !cinfo )
{
cinfo = jpg_dcinfo = new jpeg_decompress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpeg_create_decompress( cinfo );
}
FILE *infile;
if ( (infile = fopen( filename, "rb" )) == NULL )
{
Error(( "Can't open %s: %s", filename, strerror(errno) ));
return( false );
}
if ( setjmp( jpg_err.setjmp_buffer ) )
{
jpeg_abort_decompress( cinfo );
fclose( infile );
return( false );
}
jpeg_stdio_src( cinfo, infile );
jpeg_read_header( cinfo, TRUE );
if ( cinfo->image_width != width || cinfo->image_height != height || cinfo->num_components != colours )
{
width = cinfo->image_width;
height = cinfo->image_height;
pixels = width*height;
colours = cinfo->num_components;
assert( colours == 1 || colours == 3 );
int new_size = width*height*colours;
if ( !buffer || size < new_size )
{
size = new_size;
delete[] buffer;
buffer = new JSAMPLE[size];
}
}
jpeg_start_decompress( cinfo );
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = width * colours; /* physical row width in buffer */
while ( cinfo->output_scanline < cinfo->output_height )
{
row_pointer = &buffer[cinfo->output_scanline * row_stride];
jpeg_read_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_decompress( cinfo );
fclose( infile );
return( true );
}
bool Image::WriteJpeg( const char *filename, int quality_override ) const
{
if ( config.colour_jpeg_files && colours == 1 )
{
Image temp_image( *this );
temp_image.Colourise();
return( temp_image.WriteJpeg( filename ) );
}
int quality = quality_override?quality_override:config.jpeg_file_quality;
struct jpeg_compress_struct *cinfo = jpg_ccinfo[quality];
if ( !cinfo )
{
cinfo = jpg_ccinfo[quality] = new jpeg_compress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpeg_create_compress( cinfo );
jpeg_set_quality( cinfo, quality, false );
}
FILE *outfile;
if ( (outfile = fopen( filename, "wb" )) == NULL )
{
Error(( "Can't open %s: %s", filename, strerror(errno) ));
return( false );
}
jpeg_stdio_dest( cinfo, outfile );
cinfo->image_width = width; /* image width and height, in pixels */
cinfo->image_height = height;
cinfo->input_components = colours; /* # of color components per pixel */
if ( colours == 1 )
{
cinfo->in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
}
else
{
cinfo->in_color_space = JCS_RGB; /* colorspace of input image */
}
jpeg_set_defaults( cinfo );
cinfo->dct_method = JDCT_FASTEST;
jpeg_start_compress( cinfo, TRUE );
if ( config.add_jpeg_comments && text[0] )
{
jpeg_write_marker( cinfo, JPEG_COM, (const JOCTET *)text, strlen(text) );
}
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = cinfo->image_width * cinfo->input_components; /* physical row width in buffer */
while ( cinfo->next_scanline < cinfo->image_height )
{
row_pointer = &buffer[cinfo->next_scanline * row_stride];
jpeg_write_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_compress( cinfo );
fclose( outfile );
return( true );
}
bool Image::DecodeJpeg( JOCTET *inbuffer, int inbuffer_size )
{
struct jpeg_decompress_struct *cinfo = jpg_dcinfo;
if ( !cinfo )
{
cinfo = jpg_dcinfo = new jpeg_decompress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpeg_create_decompress( cinfo );
}
if ( setjmp( jpg_err.setjmp_buffer ) )
{
jpeg_abort_decompress( cinfo );
return( false );
}
jpeg_mem_src( cinfo, inbuffer, inbuffer_size );
jpeg_read_header( cinfo, TRUE );
if ( cinfo->image_width != width || cinfo->image_height != height || cinfo->num_components != colours )
{
width = cinfo->image_width;
height = cinfo->image_height;
pixels = width*height;
colours = cinfo->num_components;
assert( colours == 1 || colours == 3 );
int new_size = width*height*colours;
if ( !buffer || size < new_size )
{
size = new_size;
delete[] buffer;
buffer = new JSAMPLE[size];
}
}
jpeg_start_decompress( cinfo );
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = width * colours; /* physical row width in buffer */
while ( cinfo->output_scanline < cinfo->output_height )
{
row_pointer = &buffer[cinfo->output_scanline * row_stride];
jpeg_read_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_decompress( cinfo );
return( true );
}
bool Image::EncodeJpeg( JOCTET *outbuffer, int *outbuffer_size, int quality_override ) const
{
if ( config.colour_jpeg_files && colours == 1 )
{
Image temp_image( *this );
temp_image.Colourise();
return( temp_image.EncodeJpeg( outbuffer, outbuffer_size, quality_override ) );
}
int quality = quality_override?quality_override:config.jpeg_file_quality;
struct jpeg_compress_struct *cinfo = jpg_ccinfo[quality];
if ( !cinfo )
{
cinfo = jpg_ccinfo[quality] = new jpeg_compress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpeg_create_compress( cinfo );
jpeg_set_quality( cinfo, quality, false );
}
jpeg_mem_dest( cinfo, outbuffer, outbuffer_size );
cinfo->image_width = width; /* image width and height, in pixels */
cinfo->image_height = height;
cinfo->input_components = colours; /* # of color components per pixel */
if ( colours == 1 )
{
cinfo->in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
}
else
{
cinfo->in_color_space = JCS_RGB; /* colorspace of input image */
}
jpeg_set_defaults( cinfo );
cinfo->dct_method = JDCT_FASTEST;
jpeg_start_compress( cinfo, TRUE );
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = cinfo->image_width * cinfo->input_components; /* physical row width in buffer */
while ( cinfo->next_scanline < cinfo->image_height )
{
row_pointer = &buffer[cinfo->next_scanline * row_stride];
jpeg_write_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_compress( cinfo );
return( true );
}
bool Image::Crop( int lo_x, int lo_y, int hi_x, int hi_y )
{
int new_width = (hi_x-lo_x)+1;;
int new_height = (hi_y-lo_y)+1;;
if ( lo_x > hi_x || lo_y > hi_y )
{
Error(( "Invalid or reversed crop region %d,%d -> %d,%d", lo_x, lo_y, hi_x, hi_y ));
return( false );
}
if ( lo_x < 0 || hi_x > (width-1) || ( lo_y < 0 || hi_y > (height-1) ) )
{
Error(( "Attempting to crop outside image, %d,%d -> %d,%d not in %d,%d", lo_x, lo_y, hi_x, hi_y, width, height ));
return( false );
}
if ( new_width == width && new_height == height )
{
return( true );
}
int new_size = new_width*new_height*colours;
JSAMPLE *new_buffer = new JSAMPLE[new_size];
int new_stride = new_width*colours;
for ( int y = lo_y, ny = 0; y <= hi_y; y++, ny++ )
{
unsigned char *pbuf = &buffer[((y*width)+lo_x)*colours];
unsigned char *pnbuf = &new_buffer[(ny*new_width)*colours];
memcpy( pnbuf, pbuf, new_stride );
}
if ( our_buffer )
{
delete[] buffer;
}
width = new_width;
height = new_height;
pixels = width*height;
size = new_size;
buffer = new_buffer;
our_buffer = true;
if ( blend_buffer )
{
delete[] blend_buffer;
blend_buffer = 0;
}
return( true );
}
void Image::Overlay( const Image &image )
{
//assert( width == image.width && height == image.height && colours == image.colours );
assert( width == image.width && height == image.height );
unsigned char *pdest = buffer;
unsigned char *psrc = image.buffer;
if ( colours == 1 )
{
if ( image.colours == 1 )
{
while( pdest < (buffer+size) )
{
if ( *psrc )
{
*pdest = *psrc;
}
pdest++;
psrc++;
}
}
else
{
Colourise();
pdest = buffer;
while( pdest < (buffer+size) )
{
if ( RED(psrc) || GREEN(psrc) || BLUE(psrc) )
{
RED(pdest) = RED(psrc);
GREEN(pdest) = GREEN(psrc);
BLUE(pdest) = BLUE(psrc);
}
psrc += 3;
pdest += 3;
}
}
}
else
{
if ( image.colours == 1 )
{
while( pdest < (buffer+size) )
{
if ( *psrc )
{
RED(pdest) = GREEN(pdest) = BLUE(pdest) = *psrc++;
}
pdest += 3;
}
}
else
{
while( pdest < (buffer+size) )
{
if ( RED(psrc) || GREEN(psrc) || BLUE(psrc) )
{
RED(pdest) = RED(psrc);
GREEN(pdest) = GREEN(psrc);
BLUE(pdest) = BLUE(psrc);
}
psrc += 3;
pdest += 3;
}
}
}
}
void Image::Blend( const Image &image, int transparency ) const
{
assert( width == image.width && height == image.height && colours == image.colours );
if ( config.fast_image_blends )
{
BlendTablePtr blend_ptr = GetBlendTable( transparency );
JSAMPLE *psrc = image.buffer;
JSAMPLE *pdest = buffer;
while( pdest < (buffer+size) )
{
*pdest++ = (*blend_ptr)[*pdest][*psrc++];
}
}
else
{
if ( !blend_buffer )
{
blend_buffer = new unsigned int[size];
unsigned int *pb = blend_buffer;
JSAMPLE *p = buffer;
while( p < (buffer+size) )
{
*pb++ = (unsigned int)((*p++)<<8);
}
}
JSAMPLE *psrc = image.buffer;
JSAMPLE *pdest = buffer;
unsigned int *pblend = blend_buffer;
int opacity = 100-transparency;
while( pdest < (buffer+size) )
{
*pblend = (unsigned int)(((*pblend * opacity)+(((*psrc++)<<8) * transparency))/100);
*pdest++ = (JSAMPLE)((*pblend++)>>8);
}
}
}
Image *Image::Merge( int n_images, Image *images[] )
{
if ( n_images <= 0 ) return( 0 );
if ( n_images == 1 ) return( new Image( *images[0] ) );
int width = images[0]->width;
int height = images[0]->height;
int colours = images[0]->colours;
for ( int i = 1; i < n_images; i++ )
{
assert( width == images[i]->width && height == images[i]->height && colours == images[i]->colours );
}
Image *result = new Image( width, height, images[0]->colours );
int size = result->size;
for ( int i = 0; i < size; i++ )
{
int total = 0;
JSAMPLE *pdest = result->buffer;
for ( int j = 0; j < n_images; j++ )
{
JSAMPLE *psrc = images[j]->buffer;
total += *psrc;
psrc++;
}
*pdest = total/n_images;
pdest++;
}
return( result );
}
Image *Image::Merge( int n_images, Image *images[], double weight )
{
if ( n_images <= 0 ) return( 0 );
if ( n_images == 1 ) return( new Image( *images[0] ) );
int width = images[0]->width;
int height = images[0]->height;
int colours = images[0]->colours;
for ( int i = 1; i < n_images; i++ )
{
assert( width == images[i]->width && height == images[i]->height && colours == images[i]->colours );
}
Image *result = new Image( *images[0] );
int size = result->size;
double factor = 1.0*weight;
for ( int i = 1; i < n_images; i++ )
{
JSAMPLE *pdest = result->buffer;
JSAMPLE *psrc = images[i]->buffer;
for ( int j = 0; j < size; j++ )
{
*pdest = (JSAMPLE)(((*pdest)*(1.0-factor))+((*psrc)*factor));
pdest++;
psrc++;
}
factor *= weight;
}
return( result );
}
Image *Image::Highlight( int n_images, Image *images[], const Rgb threshold, const Rgb ref_colour )
{
if ( n_images <= 0 ) return( 0 );
if ( n_images == 1 ) return( new Image( *images[0] ) );
int width = images[0]->width;
int height = images[0]->height;
int colours = images[0]->colours;
for ( int i = 1; i < n_images; i++ )
{
assert( width == images[i]->width && height == images[i]->height && colours == images[i]->colours );
}
Image *result = new Image( width, height, images[0]->colours );
int size = result->size;
for ( int c = 0; c < 3; c++ )
{
for ( int i = 0; i < size; i++ )
{
int count = 0;
JSAMPLE *pdest = result->buffer+c;
for ( int j = 0; j < n_images; j++ )
{
JSAMPLE *psrc = images[j]->buffer+c;
if ( (unsigned)abs((*psrc)-RGB_VAL(ref_colour,c)) >= RGB_VAL(threshold,c) )
{
count++;
}
psrc += 3;
}
*pdest = (count*255)/n_images;
pdest += 3;
}
}
return( result );
}
Image *Image::Delta( const Image &image ) const
{
assert( width == image.width && height == image.height && colours == image.colours );
Image *result = new Image( width, height, 1 );
unsigned char *psrc = buffer;
unsigned char *pref = image.buffer;
unsigned char *pdiff = result->buffer;
if ( colours == 1 )
{
while( psrc < (buffer+size) )
{
//*pdiff++ = abs( *psrc++ - *pref++ );
//*pdiff++ = ABSDIFF( *psrc, *pref );
*pdiff++ = abs_table[*psrc++ - *pref++];
//psrc++;
//pref++;
}
}
else
{
register int red, green, blue;
while( psrc < (buffer+size) )
{
if ( config.y_image_deltas )
{
//Info(( "RS:%d, RR: %d", *psrc, *pref ));
red = y_r_table[*psrc++ - *pref++];
//Info(( "GS:%d, GR: %d", *psrc, *pref ));
green = y_g_table[*psrc++ - *pref++];
//Info(( "BS:%d, BR: %d", *psrc, *pref ));
blue = y_b_table[*psrc++ - *pref++];
//Info(( "R:%d, G:%d, B:%d, D:%d", red, green, blue, abs_table[red + green + blue] ));
*pdiff++ = abs_table[red + green + blue];
}
else
{
red = abs_table[*psrc++ - *pref++];
green = abs_table[*psrc++ - *pref++];
blue = abs_table[*psrc++ - *pref++];
// This is uses an RMS function, all floating point and
// rather too slow
//*pdiff++ = (JSAMPLE)sqrt((red*red + green*green + blue*blue)/3);
// This just uses the average difference, much faster
*pdiff++ = (JSAMPLE)((red + green + blue)/3);
}
}
}
return( result );
}
void Image::Annotate( const char *p_text, const Coord &coord, const Rgb colour )
{
strncpy( text, p_text, sizeof(text) );
int text_len = strlen( text );
int text_width = text_len * CHAR_WIDTH;
int text_height = CHAR_HEIGHT;
int lo_text_x = coord.X();
int lo_text_y = coord.Y();
int min_text_x = 0;
int max_text_x = width - text_width;
int min_text_y = 0;
int max_text_y = height - text_height;
if ( lo_text_x > max_text_x )
lo_text_x = max_text_x;
if ( lo_text_x < min_text_x )
lo_text_x = min_text_x;
if ( lo_text_y > max_text_y )
lo_text_y = max_text_y;
if ( lo_text_y < min_text_y )
lo_text_y = min_text_y;
int hi_text_x = lo_text_x + text_width;
int hi_text_y = lo_text_y + text_height;
if ( hi_text_x > width )
hi_text_x = width;
if ( hi_text_y > height )
hi_text_y = height;
int wc = width * colours;
unsigned char *ptr = &buffer[((lo_text_y*width)+lo_text_x)*colours];
for ( int y = lo_text_y, r = 0; y < hi_text_y && r < CHAR_HEIGHT; y++, r++, ptr += wc )
{
unsigned char *temp_ptr = ptr;
for ( int x = lo_text_x, c = 0; x < hi_text_x && c < text_len; c++ )
{
int f = fontdata[(text[c] * CHAR_HEIGHT) + r];
for ( int i = 0; i < CHAR_WIDTH && x < hi_text_x; i++, x++, temp_ptr += colours )
{
if ( f & (0x80 >> i) )
{
RED(temp_ptr) = RGB_VAL(colour,0);
GREEN(temp_ptr) = RGB_VAL(colour,1);
BLUE(temp_ptr) = RGB_VAL(colour,2);
}
}
}
}
}
void Image::Annotate( const char *p_text, const Coord &coord )
{
strncpy( text, p_text, sizeof(text) );
int text_len = strlen( text );
int text_width = text_len * CHAR_WIDTH;
int text_height = CHAR_HEIGHT;
int lo_text_x = coord.X();
int lo_text_y = coord.Y();
int min_text_x = 0;
int max_text_x = width - text_width;
int min_text_y = 0;
int max_text_y = height - text_height;
if ( lo_text_x > max_text_x )
lo_text_x = max_text_x;
if ( lo_text_x < min_text_x )
lo_text_x = min_text_x;
if ( lo_text_y > max_text_y )
lo_text_y = max_text_y;
if ( lo_text_y < min_text_y )
lo_text_y = min_text_y;
int hi_text_x = lo_text_x + text_width;
int hi_text_y = lo_text_y + text_height;
if ( hi_text_x > width )
hi_text_x = width;
if ( hi_text_y > height )
hi_text_y = height;
if ( colours == 1 )
{
unsigned char *ptr = &buffer[(lo_text_y*width)+lo_text_x];
for ( int y = lo_text_y, r = 0; y < hi_text_y && r < CHAR_HEIGHT; y++, r++, ptr += width )
{
unsigned char *temp_ptr = ptr;
for ( int x = lo_text_x, c = 0; x < hi_text_x && c < text_len; c++ )
{
int f = fontdata[(text[c] * CHAR_HEIGHT) + r];
for ( int i = 0; i < CHAR_WIDTH && x < hi_text_x; i++, x++, temp_ptr++ )
{
if ( f & (0x80 >> i) )
{
*temp_ptr = WHITE;
}
else
{
*temp_ptr = BLACK;
}
}
}
}
}
else
{
int wc = width * colours;
unsigned char *ptr = &buffer[((lo_text_y*width)+lo_text_x)*colours];
for ( int y = lo_text_y, r = 0; y < hi_text_y && r < CHAR_HEIGHT; y++, r++, ptr += wc )
{
unsigned char *temp_ptr = ptr;
for ( int x = lo_text_x, c = 0; x < hi_text_x && c < text_len; c++ )
{
int f = fontdata[(text[c] * CHAR_HEIGHT) + r];
for ( int i = 0; i < CHAR_WIDTH && x < hi_text_x; i++, x++, temp_ptr += colours )
{
if ( f & (0x80 >> i) )
{
RED(temp_ptr) = GREEN(temp_ptr) = BLUE(temp_ptr) = WHITE;
}
else
{
RED(temp_ptr) = GREEN(temp_ptr) = BLUE(temp_ptr) = BLACK;
}
}
}
}
}
}
void Image::Timestamp( const char *label, const time_t when, const Coord &coord )
{
char time_text[64];
strftime( time_text, sizeof(time_text), "%y/%m/%d %H:%M:%S", localtime( &when ) );
char text[64];
if ( label )
{
snprintf( text, sizeof(text), "%s - %s", label, time_text );
Annotate( text, coord );
}
else
{
Annotate( time_text, coord );
}
}
void Image::Colourise()
{
if ( colours == 1 )
{
colours = 3;
size = width * height * 3;
JSAMPLE *new_buffer = new JSAMPLE[size];
JSAMPLE *psrc = buffer;
JSAMPLE *pdest = new_buffer;
while( pdest < (new_buffer+size) )
{
RED(pdest) = GREEN(pdest) = BLUE(pdest) = *psrc++;
pdest += 3;
}
delete[] buffer;
buffer = new_buffer;
}
}
void Image::DeColourise()
{
if ( colours == 3 )
{
colours = 1;
size = width * height;
JSAMPLE *psrc = buffer;
JSAMPLE *pdest = buffer;
while( pdest < (buffer+size) )
{
*pdest++ = (JSAMPLE)sqrt((RED(psrc) + GREEN(psrc) + BLUE(psrc))/3);
psrc += 3;
}
}
}
void Image::Fill( Rgb colour, const Box *limits )
{
assert( colours == 1 || colours == 3 );
int lo_x = limits?limits->Lo().X():0;
int lo_y = limits?limits->Lo().Y():0;
int hi_x = limits?limits->Hi().X():width-1;
int hi_y = limits?limits->Hi().Y():height-1;
if ( colours == 1 )
{
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[(y*width)+lo_x];
for ( int x = lo_x; x <= hi_x; x++ )
{
*p++ = colour;
}
}
}
else if ( colours == 3 )
{
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++ )
{
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
p += colours;
}
}
}
}
void Image::Fill( Rgb colour, int density, const Box *limits )
{
assert( colours == 1 || colours == 3 );
int lo_x = limits?limits->Lo().X():0;
int lo_y = limits?limits->Lo().Y():0;
int hi_x = limits?limits->Hi().X():width-1;
int hi_y = limits?limits->Hi().Y():height-1;
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++, p += colours )
{
if ( ( x == lo_x || x == hi_x || y == lo_y || y == hi_y ) || (!(x%density) && !(y%density) ) )
{
if ( colours == 1 )
{
*p = colour;
}
else if ( colours == 3 )
{
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
}
}
void Image::Outline( Rgb colour, const Polygon &polygon )
{
assert( colours == 1 || colours == 3 );
int n_coords = polygon.getNumCoords();
for ( int j = 0, i = n_coords-1; j < n_coords; i = j++ )
{
const Coord &p1 = polygon.getCoord( i );
const Coord &p2 = polygon.getCoord( j );
int x1 = p1.X();
int x2 = p2.X();
int y1 = p1.Y();
int y2 = p2.Y();
double dx = x2 - x1;
double dy = y2 - y1;
double grad;
Debug( 9, ( "dx: %.2lf, dy: %.2lf", dx, dy ));
if ( fabs(dx) <= fabs(dy) )
{
Debug( 9, ( "dx <= dy" ));
if ( y1 != y2 )
grad = dx/dy;
else
grad = width;
double x;
int y, yinc = (y1<y2)?1:-1;
grad *= yinc;
if ( colours == 1 )
{
Debug( 9, ( "x1:%d, x2:%d, y1:%d, y2:%d, gr:%.2f", x1, x2, y1, y2, grad ));
for ( x = x1, y = y1; y != y2; y += yinc, x += grad )
{
Debug( 9, ( "x:%.2f, y:%d", x, y ));
buffer[(y*width)+int(round(x))] = colour;
}
}
else if ( colours == 3 )
{
for ( x = x1, y = y1; y != y2; y += yinc, x += grad )
{
unsigned char *p = &buffer[colours*((y*width)+int(round(x)))];
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
else
{
Debug( 9, ( "dx > dy" ));
if ( x1 != x2 )
grad = dy/dx;
else
grad = height;
Debug( 9, ( "grad: %.2lf", grad ));
double y;
int x, xinc = (x1<x2)?1:-1;
grad *= xinc;
if ( colours == 1 )
{
Debug( 9, ( "x1:%d, x2:%d, y1:%d, y2:%d, gr:%.2lf", x1, x2, y1, y2, grad ));
for ( y = y1, x = x1; x != x2; x += xinc, y += grad )
{
Debug( 9, ( "x:%d, y:%.2f", x, y ));
buffer[(int(round(y))*width)+x] = colour;
}
}
else if ( colours == 3 )
{
for ( y = y1, x = x1; x != x2; x += xinc, y += grad )
{
unsigned char *p = &buffer[colours*((int(round(y))*width)+x)];
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
}
}
void Image::Fill( Rgb colour, int density, const Polygon &polygon )
{
assert( colours == 1 || colours == 3 );
int n_coords = polygon.getNumCoords();
int n_global_edges = 0;
Edge global_edges[n_coords];
for ( int j = 0, i = n_coords-1; j < n_coords; i = j++ )
{
const Coord &p1 = polygon.getCoord( i );
const Coord &p2 = polygon.getCoord( j );
int x1 = p1.X();
int x2 = p2.X();
int y1 = p1.Y();
int y2 = p2.Y();
Debug( 9, ( "x1:%d,y1:%d x2:%d,y2:%d", x1, y1, x2, y2 ));
if ( y1 == y2 )
continue;
double dx = x2 - x1;
double dy = y2 - y1;
global_edges[n_global_edges].min_y = y1<y2?y1:y2;
global_edges[n_global_edges].max_y = y1<y2?y2:y1;
global_edges[n_global_edges].min_x = y1<y2?x1:x2;
global_edges[n_global_edges]._1_m = dx/dy;
n_global_edges++;
}
qsort( global_edges, n_global_edges, sizeof(*global_edges), Edge::CompareYX );
#ifndef ZM_DBG_OFF
if ( zm_dbg_level >= 9 )
{
for ( int i = 0; i < n_global_edges; i++ )
{
Debug( 9, ( "%d: min_y: %d, max_y:%d, min_x:%.2f, 1/m:%.2f", i, global_edges[i].min_y, global_edges[i].max_y, global_edges[i].min_x, global_edges[i]._1_m ));
}
}
#endif
int n_active_edges = 0;
Edge active_edges[n_global_edges];
int y = global_edges[0].min_y;
do
{
for ( int i = 0; i < n_global_edges; i++ )
{
if ( global_edges[i].min_y == y )
{
Debug( 9, ( "Moving global edge" ));
active_edges[n_active_edges++] = global_edges[i];
if ( i < (n_global_edges-1) )
{
memcpy( &global_edges[i], &global_edges[i+1], sizeof(*global_edges)*(n_global_edges-i) );
i--;
}
n_global_edges--;
}
else
{
break;
}
}
qsort( active_edges, n_active_edges, sizeof(*active_edges), Edge::CompareX );
#ifndef ZM_DBG_OFF
if ( zm_dbg_level >= 9 )
{
for ( int i = 0; i < n_active_edges; i++ )
{
Debug( 9, ( "%d - %d: min_y: %d, max_y:%d, min_x:%.2f, 1/m:%.2f", y, i, active_edges[i].min_y, active_edges[i].max_y, active_edges[i].min_x, active_edges[i]._1_m ));
}
}
#endif
if ( !(y%density) )
{
//Debug( 9, ( "%d", y ));
for ( int i = 0; i < n_active_edges; )
{
int lo_x = int(round(active_edges[i++].min_x));
int hi_x = int(round(active_edges[i++].min_x));
unsigned char *p = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++, p += colours )
{
if ( !(x%density) )
{
//Debug( 9, ( " %d", x ));
if ( colours == 1 )
{
*p = colour;
}
else
{
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
}
}
y++;
for ( int i = n_active_edges-1; i >= 0; i-- )
{
if ( y >= active_edges[i].max_y ) // Or >= as per sheets
{
Debug( 9, ( "Deleting active_edge" ));
if ( i < (n_active_edges-1) )
{
memcpy( &active_edges[i], &active_edges[i+1], sizeof(*active_edges)*(n_active_edges-i) );
}
n_active_edges--;
}
else
{
active_edges[i].min_x += active_edges[i]._1_m;
}
}
} while ( n_global_edges || n_active_edges );
}
void Image::Fill( Rgb colour, const Polygon &polygon )
{
Fill( colour, 1, polygon );
}
void Image::Rotate( int angle )
{
angle %= 360;
if ( !angle )
{
return;
}
if ( angle%90 )
{
return;
}
static unsigned char rotate_buffer[ZM_MAX_IMAGE_SIZE];
switch( angle )
{
case 90 :
{
int temp = width;
width = height;
height = temp;
int line_bytes = width*colours;
unsigned char *s_ptr = buffer;
if ( colours == 1 )
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+i;
for ( int j = height-1; j >= 0; j-- )
{
*d_ptr = *s_ptr++;
d_ptr += line_bytes;
}
}
}
else
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+(3*i);
for ( int j = height-1; j >= 0; j-- )
{
*d_ptr = *s_ptr++;
*(d_ptr+1) = *s_ptr++;
*(d_ptr+2) = *s_ptr++;
d_ptr += line_bytes;
}
}
}
break;
}
case 180 :
{
unsigned char *s_ptr = buffer+size;
unsigned char *d_ptr = rotate_buffer;
if ( colours == 1 )
{
while( s_ptr > buffer )
{
s_ptr--;
*d_ptr++ = *s_ptr;
}
}
else
{
while( s_ptr > buffer )
{
s_ptr -= 3;
*d_ptr++ = *s_ptr;
*d_ptr++ = *(s_ptr+1);
*d_ptr++ = *(s_ptr+2);
}
}
break;
}
case 270 :
{
int temp = width;
width = height;
height = temp;
int line_bytes = width*colours;
unsigned char *s_ptr = buffer+size;
if ( colours == 1 )
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+i;
for ( int j = height-1; j >= 0; j-- )
{
s_ptr--;
*d_ptr = *s_ptr;
d_ptr += line_bytes;
}
}
}
else
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+(3*i);
for ( int j = height-1; j >= 0; j-- )
{
*(d_ptr+2) = *(--s_ptr);
*(d_ptr+1) = *(--s_ptr);
*d_ptr = *(--s_ptr);
d_ptr += line_bytes;
}
}
}
break;
}
}
memcpy( buffer, rotate_buffer, size );
}
void Image::Flip( bool leftright )
{
static unsigned char flip_buffer[ZM_MAX_IMAGE_SIZE];
int line_bytes = width*colours;
int line_bytes2 = 2*line_bytes;
if ( leftright )
{
// Horizontal flip, left to right
unsigned char *s_ptr = buffer+line_bytes;
unsigned char *d_ptr = flip_buffer;
unsigned char *max_d_ptr = flip_buffer + size;
if ( colours == 1 )
{
while( d_ptr < max_d_ptr )
{
for ( int j = 0; j < width; j++ )
{
s_ptr--;
*d_ptr++ = *s_ptr;
}
s_ptr += line_bytes2;
}
}
else
{
while( d_ptr < max_d_ptr )
{
for ( int j = 0; j < width; j++ )
{
s_ptr -= 3;
*d_ptr++ = *s_ptr;
*d_ptr++ = *(s_ptr+1);
*d_ptr++ = *(s_ptr+2);
}
s_ptr += line_bytes2;
}
}
}
else
{
// Vertical flip, top to bottom
unsigned char *s_ptr = buffer+(height*line_bytes);
unsigned char *d_ptr = flip_buffer;
while( s_ptr > buffer )
{
s_ptr -= line_bytes;
memcpy( d_ptr, s_ptr, line_bytes );
d_ptr += line_bytes;
}
}
memcpy( buffer, flip_buffer, size );
}
void Image::Scale( unsigned int factor )
{
if ( !factor )
{
Error(( "Bogus scale factor %d found", factor ));
return;
}
if ( factor == ZM_SCALE_SCALE )
{
return;
}
static unsigned char scale_buffer[ZM_MAX_IMAGE_SIZE];
unsigned int new_width = (width*factor)/ZM_SCALE_SCALE;
unsigned int new_height = (height*factor)/ZM_SCALE_SCALE;
if ( factor > ZM_SCALE_SCALE )
{
unsigned char *pd = scale_buffer;
unsigned int wc = width*colours;
unsigned int nwc = new_width*colours;
unsigned int h_count = ZM_SCALE_SCALE/2;
unsigned int last_h_index = 0;
unsigned int h_index;
for ( int y = 0; y < height; y++ )
{
unsigned char *ps = &buffer[y*wc];
unsigned int w_count = ZM_SCALE_SCALE/2;
unsigned int last_w_index = 0;
unsigned int w_index;
for ( int x = 0; x < width; x++ )
{
w_count += factor;
w_index = w_count/ZM_SCALE_SCALE;
for ( int f = last_w_index; f < w_index; f++ )
{
for ( int c = 0; c < colours; c++ )
{
*pd++ = *(ps+c);
}
}
ps += colours;
last_w_index = w_index;
}
h_count += factor;
h_index = h_count/ZM_SCALE_SCALE;
for ( int f = last_h_index+1; f < h_index; f++ )
{
memcpy( pd, pd-nwc, nwc );
pd += nwc;
}
last_h_index = h_index;
}
}
else
{
unsigned int inv_factor = (ZM_SCALE_SCALE*ZM_SCALE_SCALE)/factor;
unsigned char *pd = scale_buffer;
unsigned int wc = width*colours;
unsigned int xstart = factor/2;
unsigned int ystart = factor/2;
unsigned int h_count = ystart;
unsigned int last_h_index = 0;
unsigned int h_index;
for ( unsigned int y = 0; y < height; y++ )
{
h_count += factor;
h_index = h_count/ZM_SCALE_SCALE;
if ( h_index > last_h_index )
{
unsigned int w_count = xstart;
unsigned int last_w_index = 0;
unsigned int w_index;
unsigned char *ps = &buffer[y*wc];
for ( unsigned int x = 0; x < width; x++ )
{
w_count += factor;
w_index = w_count/ZM_SCALE_SCALE;
if ( w_index > last_w_index )
{
for ( int c = 0; c < colours; c++ )
{
*pd++ = *ps++;
}
}
else
{
ps += colours;
}
last_w_index = w_index;
}
}
last_h_index = h_index;
}
}
width = new_width;
height = new_height;
pixels = width*height;
size = width*height*colours;
delete[] buffer;
buffer = new JSAMPLE[size];
memcpy( buffer, scale_buffer, size );
}