zoneminder/src/zm_image.cpp

1745 lines
42 KiB
C++
Raw Normal View History

//
// ZoneMinder Image Class Implementation, $Date$, $Revision$
// Copyright (C) 2001-2008 Philip Coombes
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
#include "zm.h"
#include "zm_font.h"
#include "zm_image.h"
#include <sys/stat.h>
#include <errno.h>
#define ABSDIFF(a,b) (((a)<(b))?((b)-(a)):((a)-(b)))
bool Image::initialised = false;
unsigned char *Image::abs_table;
unsigned char *Image::y_r_table;
unsigned char *Image::y_g_table;
unsigned char *Image::y_b_table;
Image::BlendTablePtr Image::blend_tables[101];
jpeg_compress_struct *Image::jpg_ccinfo[100] = { 0 };
jpeg_decompress_struct *Image::jpg_dcinfo = 0;
struct zm_error_mgr Image::jpg_err;
Image::Image()
{
if ( !initialised )
Initialise();
width = 0;
height = 0;
pixels = 0;
colours = 0;
size = 0;
allocation = 0;
buffer = 0;
blend_buffer = 0;
text[0] = '\0';
}
Image::Image( const char *filename )
{
if ( !initialised )
Initialise();
width = 0;
height = 0;
pixels = 0;
colours = 0;
size = 0;
allocation = 0;
buffer = 0;
ReadJpeg( filename );
blend_buffer = 0;
text[0] = '\0';
}
Image::Image( int p_width, int p_height, int p_colours, uint8_t *p_buffer )
{
if ( !initialised )
Initialise();
width = p_width;
height = p_height;
pixels = width*height;
colours = p_colours;
size = width*height*colours;
if ( p_buffer )
{
allocation = 0;
buffer = p_buffer;
}
else
{
allocation = size;
buffer = new uint8_t[allocation];
memset( buffer, 0, size );
}
blend_buffer = 0;
text[0] = '\0';
}
Image::Image( const Image &p_image )
{
if ( !initialised )
Initialise();
width = p_image.width;
height = p_image.height;
pixels = p_image.pixels;
colours = p_image.colours;
size = allocation = p_image.size;
buffer = new uint8_t[allocation];
memcpy( buffer, p_image.buffer, size );
blend_buffer = 0;
strncpy( text, p_image.text, sizeof(text) );
}
Image::~Image()
{
if ( allocation )
{
delete[] buffer;
}
delete[] blend_buffer;
}
void Image::Initialise()
{
initialised = true;
abs_table = new unsigned char[(6*255)+1];
abs_table += (3*255);
y_r_table = new unsigned char[511];
y_r_table += 255;
y_g_table = new unsigned char[511];
y_g_table += 255;
y_b_table = new unsigned char[511];
y_b_table += 255;
for ( int i = -(3*255); i <= (3*255); i++ )
{
abs_table[i] = abs(i);
}
for ( int i = -255; i <= 255; i++ )
{
y_r_table[i] = (2990*abs(i))/10000;
y_g_table[i] = (5670*abs(i))/10000;
y_b_table[i] = (1140*abs(i))/10000;
//Info( "I:%d, R:%d, G:%d, B:%d", i, y_r_table[i], y_g_table[i], y_b_table[i] );
}
for ( int i = 0; i <= 100; i++ )
{
blend_tables[i] = 0;
}
}
Image::BlendTablePtr Image::GetBlendTable( int transparency )
{
BlendTablePtr blend_ptr = blend_tables[transparency];
if ( !blend_ptr )
{
blend_ptr = blend_tables[transparency] = new BlendTable[1];
//Info( "Generating blend table for transparency %d", transparency );
int opacity = 100-transparency;
for ( int i = 0; i < 256; i++ )
{
for ( int j = 0; j < 256; j++ )
{
(*blend_ptr)[i][j] = (uint8_t)round(((i * opacity)+(j * transparency))/100.0L);
//printf( "I:%d, J:%d, B:%d\n", i, j, (*blend_ptr)[i][j] );
}
}
}
return( blend_ptr );
}
void Image::Empty()
{
if ( allocation )
{
delete[] buffer;
buffer = 0;
allocation = 0;
}
width = height = colours = size = 0;
}
void Image::Assign( int p_width, int p_height, int p_colours, unsigned char *new_buffer )
{
if ( !buffer || p_width != width || p_height != height || p_colours != colours )
{
width = p_width;
height = p_height;
pixels = width*height;
colours = p_colours;
size = width*height*colours;
if ( allocation < size )
{
allocation = size;
delete[] buffer;
buffer = new uint8_t[allocation];
memset( buffer, 0, size );
}
}
memcpy( buffer, new_buffer, size );
}
void Image::Assign( const Image &image )
{
if ( !buffer || image.width != width || image.height != height || image.colours != colours )
{
width = image.width;
height = image.height;
pixels = width*height;
colours = image.colours;
size = width*height*colours;
if ( allocation < size )
{
allocation = size;
delete[] buffer;
buffer = new uint8_t[allocation];
memset( buffer, 0, size );
}
}
memcpy( buffer, image.buffer, size );
}
Image *Image::HighlightEdges( Rgb colour, const Box *limits )
{
if ( colours != 1 )
{
Panic( "Attempt to highlight image edges when colours = %d", colours );
}
Image *high_image = new Image( width, height, 3 );
int lo_x = limits?limits->Lo().X():0;
int lo_y = limits?limits->Lo().Y():0;
int hi_x = limits?limits->Hi().X():width-1;
int hi_y = limits?limits->Hi().Y():height-1;
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[(y*width)+lo_x];
unsigned char *phigh = high_image->Buffer( lo_x, y );
for ( int x = lo_x; x <= hi_x; x++, p++, phigh += 3 )
{
bool edge = false;
if ( *p )
{
if ( !edge && x > 0 && !*(p-1) ) edge = true;
if ( !edge && x < (width-1) && !*(p+1) ) edge = true;
if ( !edge && y > 0 && !*(p-width) ) edge = true;
if ( !edge && y < (height-1) && !*(p+width) ) edge = true;
}
if ( edge )
{
RED(phigh) = RGB_RED_VAL(colour);
GREEN(phigh) = RGB_GREEN_VAL(colour);
BLUE(phigh) = RGB_BLUE_VAL(colour);
}
}
}
return( high_image );
}
bool Image::ReadRaw( const char *filename )
{
FILE *infile;
if ( (infile = fopen( filename, "rb" )) == NULL )
{
Error( "Can't open %s: %s", filename, strerror(errno) );
return( false );
}
struct stat statbuf;
if ( fstat( fileno(infile), &statbuf ) < 0 )
{
Error( "Can't fstat %s: %s", filename, strerror(errno) );
return( false );
}
if ( statbuf.st_size != size )
{
Error( "Raw file size mismatch, expected %d bytes, found %ld", size, statbuf.st_size );
return( false );
}
if ( fread( buffer, size, 1, infile ) < 1 )
{
Fatal( "Unable to read from '%s': %s", filename, strerror(errno) );
return( false );
}
fclose( infile );
return( true );
}
bool Image::WriteRaw( const char *filename ) const
{
FILE *outfile;
if ( (outfile = fopen( filename, "wb" )) == NULL )
{
Error( "Can't open %s: %s", filename, strerror(errno) );
return( false );
}
if ( fwrite( buffer, size, 1, outfile ) != 1 )
{
Error( "Unable to write to '%s': %s", filename, strerror(errno) );
return( false );
}
fclose( outfile );
return( true );
}
bool Image::ReadJpeg( const char *filename )
{
struct jpeg_decompress_struct *cinfo = jpg_dcinfo;
if ( !cinfo )
{
cinfo = jpg_dcinfo = new jpeg_decompress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpg_err.pub.error_exit = zm_jpeg_error_exit;
jpg_err.pub.emit_message = zm_jpeg_emit_message;
jpeg_create_decompress( cinfo );
}
FILE *infile;
if ( (infile = fopen( filename, "rb" )) == NULL )
{
Error( "Can't open %s: %s", filename, strerror(errno) );
return( false );
}
if ( setjmp( jpg_err.setjmp_buffer ) )
{
jpeg_abort_decompress( cinfo );
fclose( infile );
return( false );
}
jpeg_stdio_src( cinfo, infile );
jpeg_read_header( cinfo, TRUE );
if ( cinfo->image_width != width || cinfo->image_height != height || cinfo->num_components != colours )
{
width = cinfo->image_width;
height = cinfo->image_height;
pixels = width*height;
colours = cinfo->num_components;
if ( !(colours == 1 || colours == 3) )
{
Error( "Unexpected colours (%d) when reading jpeg image", colours );
jpeg_abort_decompress( cinfo );
fclose( infile );
return( false );
}
size = width*height*colours;
if ( !buffer || allocation < size )
{
allocation = size;
delete[] buffer;
buffer = new uint8_t[allocation];
}
}
jpeg_start_decompress( cinfo );
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = width * colours; /* physical row width in buffer */
while ( cinfo->output_scanline < cinfo->output_height )
{
row_pointer = &buffer[cinfo->output_scanline * row_stride];
jpeg_read_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_decompress( cinfo );
fclose( infile );
return( true );
}
bool Image::WriteJpeg( const char *filename, int quality_override ) const
{
if ( config.colour_jpeg_files && colours == 1 )
{
Image temp_image( *this );
temp_image.Colourise();
return( temp_image.WriteJpeg( filename, quality_override ) );
}
int quality = quality_override?quality_override:config.jpeg_file_quality;
struct jpeg_compress_struct *cinfo = jpg_ccinfo[quality];
if ( !cinfo )
{
cinfo = jpg_ccinfo[quality] = new jpeg_compress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpg_err.pub.error_exit = zm_jpeg_error_exit;
jpg_err.pub.emit_message = zm_jpeg_emit_message;
jpeg_create_compress( cinfo );
}
FILE *outfile;
if ( (outfile = fopen( filename, "wb" )) == NULL )
{
Error( "Can't open %s: %s", filename, strerror(errno) );
return( false );
}
jpeg_stdio_dest( cinfo, outfile );
cinfo->image_width = width; /* image width and height, in pixels */
cinfo->image_height = height;
cinfo->input_components = colours; /* # of color components per pixel */
if ( colours == 1 )
{
cinfo->in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
}
else
{
cinfo->in_color_space = JCS_RGB; /* colorspace of input image */
}
jpeg_set_defaults( cinfo );
jpeg_set_quality( cinfo, quality, false );
cinfo->dct_method = JDCT_FASTEST;
jpeg_start_compress( cinfo, TRUE );
if ( config.add_jpeg_comments && text[0] )
{
jpeg_write_marker( cinfo, JPEG_COM, (const JOCTET *)text, strlen(text) );
}
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = cinfo->image_width * cinfo->input_components; /* physical row width in buffer */
while ( cinfo->next_scanline < cinfo->image_height )
{
row_pointer = &buffer[cinfo->next_scanline * row_stride];
jpeg_write_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_compress( cinfo );
fclose( outfile );
return( true );
}
bool Image::DecodeJpeg( const JOCTET *inbuffer, int inbuffer_size )
{
struct jpeg_decompress_struct *cinfo = jpg_dcinfo;
if ( !cinfo )
{
cinfo = jpg_dcinfo = new jpeg_decompress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpg_err.pub.error_exit = zm_jpeg_error_exit;
jpg_err.pub.emit_message = zm_jpeg_emit_message;
jpeg_create_decompress( cinfo );
}
if ( setjmp( jpg_err.setjmp_buffer ) )
{
jpeg_abort_decompress( cinfo );
return( false );
}
zm_jpeg_mem_src( cinfo, inbuffer, inbuffer_size );
jpeg_read_header( cinfo, TRUE );
if ( cinfo->image_width != width || cinfo->image_height != height || cinfo->num_components != colours )
{
width = cinfo->image_width;
height = cinfo->image_height;
pixels = width*height;
colours = cinfo->num_components;
if ( !(colours == 1 || colours == 3) )
{
Error( "Unexpected colours (%d) when decoding jpeg image", colours );
jpeg_abort_decompress( cinfo );
return( false );
}
size = width*height*colours;
if ( !buffer || allocation < size )
{
allocation = size;
delete[] buffer;
buffer = new uint8_t[allocation];
}
}
jpeg_start_decompress( cinfo );
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = width * colours; /* physical row width in buffer */
while ( cinfo->output_scanline < cinfo->output_height )
{
row_pointer = &buffer[cinfo->output_scanline * row_stride];
jpeg_read_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_decompress( cinfo );
return( true );
}
bool Image::EncodeJpeg( JOCTET *outbuffer, int *outbuffer_size, int quality_override ) const
{
if ( config.colour_jpeg_files && colours == 1 )
{
Image temp_image( *this );
temp_image.Colourise();
return( temp_image.EncodeJpeg( outbuffer, outbuffer_size, quality_override ) );
}
int quality = quality_override?quality_override:config.jpeg_stream_quality;
struct jpeg_compress_struct *cinfo = jpg_ccinfo[quality];
if ( !cinfo )
{
cinfo = jpg_ccinfo[quality] = new jpeg_compress_struct;
cinfo->err = jpeg_std_error( &jpg_err.pub );
jpg_err.pub.error_exit = zm_jpeg_error_exit;
jpg_err.pub.emit_message = zm_jpeg_emit_message;
jpeg_create_compress( cinfo );
}
zm_jpeg_mem_dest( cinfo, outbuffer, outbuffer_size );
cinfo->image_width = width; /* image width and height, in pixels */
cinfo->image_height = height;
cinfo->input_components = colours; /* # of color components per pixel */
if ( colours == 1 )
{
cinfo->in_color_space = JCS_GRAYSCALE; /* colorspace of input image */
}
else
{
cinfo->in_color_space = JCS_RGB; /* colorspace of input image */
}
jpeg_set_defaults( cinfo );
jpeg_set_quality( cinfo, quality, false );
cinfo->dct_method = JDCT_FASTEST;
jpeg_start_compress( cinfo, TRUE );
JSAMPROW row_pointer; /* pointer to a single row */
int row_stride = cinfo->image_width * cinfo->input_components; /* physical row width in buffer */
while ( cinfo->next_scanline < cinfo->image_height )
{
row_pointer = &buffer[cinfo->next_scanline * row_stride];
jpeg_write_scanlines( cinfo, &row_pointer, 1 );
}
jpeg_finish_compress( cinfo );
return( true );
}
#if HAVE_ZLIB_H
bool Image::Unzip( const Bytef *inbuffer, unsigned long inbuffer_size )
{
unsigned long zip_size = size;
int result = uncompress( buffer, &zip_size, inbuffer, inbuffer_size );
if ( result != Z_OK )
{
Error( "Unzip failed, result = %d", result );
return( false );
}
if ( zip_size != size )
{
Error( "Unzip failed, size mismatch, expected %d bytes, got %ld", size, zip_size );
return( false );
}
return( true );
}
bool Image::Zip( Bytef *outbuffer, unsigned long *outbuffer_size, int compression_level ) const
{
int result = compress2( outbuffer, outbuffer_size, buffer, size, compression_level );
if ( result != Z_OK )
{
Error( "Zip failed, result = %d", result );
return( false );
}
return( true );
}
#endif // HAVE_ZLIB_H
bool Image::Crop( int lo_x, int lo_y, int hi_x, int hi_y )
{
int new_width = (hi_x-lo_x)+1;
int new_height = (hi_y-lo_y)+1;
if ( lo_x > hi_x || lo_y > hi_y )
{
Error( "Invalid or reversed crop region %d,%d -> %d,%d", lo_x, lo_y, hi_x, hi_y );
return( false );
}
if ( lo_x < 0 || hi_x > (width-1) || ( lo_y < 0 || hi_y > (height-1) ) )
{
Error( "Attempting to crop outside image, %d,%d -> %d,%d not in %d,%d", lo_x, lo_y, hi_x, hi_y, width-1, height-1 );
return( false );
}
if ( new_width == width && new_height == height )
{
return( true );
}
int new_size = new_width*new_height*colours;
uint8_t *new_buffer = new uint8_t[new_size];
int new_stride = new_width*colours;
for ( int y = lo_y, ny = 0; y <= hi_y; y++, ny++ )
{
unsigned char *pbuf = &buffer[((y*width)+lo_x)*colours];
unsigned char *pnbuf = &new_buffer[(ny*new_width)*colours];
memcpy( pnbuf, pbuf, new_stride );
}
if ( allocation )
{
delete[] buffer;
}
width = new_width;
height = new_height;
pixels = width*height;
size = allocation = new_size;
buffer = new_buffer;
if ( blend_buffer )
{
delete[] blend_buffer;
blend_buffer = 0;
}
return( true );
}
bool Image::Crop( const Box &limits )
{
return( Crop( limits.LoX(), limits.LoY(), limits.HiX(), limits.HiY() ) );
}
void Image::Overlay( const Image &image )
{
if ( !(width == image.width && height == image.height) )
{
Panic( "Attempt to overlay different sized images, expected %dx%d, got %dx%d", width, height, image.width, image.height );
}
unsigned char *pdest = buffer;
unsigned char *psrc = image.buffer;
if ( colours == 1 )
{
if ( image.colours == 1 )
{
while( pdest < (buffer+size) )
{
if ( *psrc )
{
*pdest = *psrc;
}
pdest++;
psrc++;
}
}
else
{
Colourise();
pdest = buffer;
while( pdest < (buffer+size) )
{
if ( RED(psrc) || GREEN(psrc) || BLUE(psrc) )
{
RED(pdest) = RED(psrc);
GREEN(pdest) = GREEN(psrc);
BLUE(pdest) = BLUE(psrc);
}
psrc += 3;
pdest += 3;
}
}
}
else
{
if ( image.colours == 1 )
{
while( pdest < (buffer+size) )
{
if ( *psrc )
{
RED(pdest) = GREEN(pdest) = BLUE(pdest) = *psrc++;
}
pdest += 3;
}
}
else
{
while( pdest < (buffer+size) )
{
if ( RED(psrc) || GREEN(psrc) || BLUE(psrc) )
{
RED(pdest) = RED(psrc);
GREEN(pdest) = GREEN(psrc);
BLUE(pdest) = BLUE(psrc);
}
psrc += 3;
pdest += 3;
}
}
}
}
void Image::Overlay( const Image &image, int x, int y )
{
if ( !(width < image.width || height < image.height) )
{
Panic( "Attempt to overlay image too big for destination, %dx%d > %dx%d", image.width, image.height, width, height );
}
if ( !(width < (x+image.width) || height < (y+image.height)) )
{
Panic( "Attempt to overlay image outside of destination bounds, %dx%d @ %dx%d > %dx%d", image.width, image.height, x, y, width, height );
}
if ( !(colours == image.colours) )
{
Panic( "Attempt to partial overlay differently coloured images, expected %d, got %d", colours, image.colours );
}
int lo_x = x;
int lo_y = y;
int hi_x = (x+image.width)-1;
int hi_y = (y+image.height-1);
if ( colours == 1 )
{
unsigned char *psrc = image.buffer;
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *pdest = &buffer[(y*width)+lo_x];
for ( int x = lo_x; x <= hi_x; x++ )
{
*pdest++ = *psrc++;
}
}
}
else if ( colours == 3 )
{
unsigned char *psrc = image.buffer;
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *pdest = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++ )
{
*pdest++ = *psrc++;
*pdest++ = *psrc++;
*pdest++ = *psrc++;
}
}
}
}
void Image::Blend( const Image &image, int transparency ) const
{
if ( !(width == image.width && height == image.height && colours == image.colours) )
{
Panic( "Attempt to blend different sized images, expected %dx%dx%d, got %dx%dx%d", width, height, colours, image.width, image.height, image.colours );
}
if ( config.fast_image_blends )
{
BlendTablePtr blend_ptr = GetBlendTable( transparency );
uint8_t *psrc = image.buffer;
uint8_t *pdest = buffer;
while( pdest < (buffer+size) )
{
*pdest++ = (*blend_ptr)[*pdest][*psrc++];
}
}
else
{
if ( !blend_buffer )
{
blend_buffer = new uint16_t[size];
uint16_t *pb = blend_buffer;
uint8_t *p = buffer;
while( p < (buffer+size) )
{
*pb++ = (uint16_t)((*p++)<<8);
}
}
uint8_t *psrc = image.buffer;
uint8_t *pdest = buffer;
uint16_t *pblend = blend_buffer;
int opacity = 100-transparency;
while( pdest < (buffer+size) )
{
*pblend = (uint16_t)(((*pblend * opacity)+(((*psrc++)<<8) * transparency))/100);
*pdest++ = (uint8_t)((*pblend++)>>8);
}
}
}
Image *Image::Merge( int n_images, Image *images[] )
{
if ( n_images <= 0 ) return( 0 );
if ( n_images == 1 ) return( new Image( *images[0] ) );
int width = images[0]->width;
int height = images[0]->height;
int colours = images[0]->colours;
for ( int i = 1; i < n_images; i++ )
{
if ( !(width == images[i]->width && height == images[i]->height && colours == images[i]->colours) )
{
Panic( "Attempt to merge different sized images, expected %dx%dx%d, got %dx%dx%d, for image %d", width, height, colours, images[i]->width, images[i]->height, images[i]->colours, i );
}
}
Image *result = new Image( width, height, images[0]->colours );
int size = result->size;
for ( int i = 0; i < size; i++ )
{
int total = 0;
uint8_t *pdest = result->buffer;
for ( int j = 0; j < n_images; j++ )
{
uint8_t *psrc = images[j]->buffer;
total += *psrc;
psrc++;
}
*pdest = total/n_images;
pdest++;
}
return( result );
}
Image *Image::Merge( int n_images, Image *images[], double weight )
{
if ( n_images <= 0 ) return( 0 );
if ( n_images == 1 ) return( new Image( *images[0] ) );
int width = images[0]->width;
int height = images[0]->height;
int colours = images[0]->colours;
for ( int i = 1; i < n_images; i++ )
{
if ( !(width == images[i]->width && height == images[i]->height && colours == images[i]->colours) )
{
Panic( "Attempt to merge different sized images, expected %dx%dx%d, got %dx%dx%d, for image %d", width, height, colours, images[i]->width, images[i]->height, images[i]->colours, i );
}
}
Image *result = new Image( *images[0] );
int size = result->size;
double factor = 1.0*weight;
for ( int i = 1; i < n_images; i++ )
{
uint8_t *pdest = result->buffer;
uint8_t *psrc = images[i]->buffer;
for ( int j = 0; j < size; j++ )
{
*pdest = (uint8_t)(((*pdest)*(1.0-factor))+((*psrc)*factor));
pdest++;
psrc++;
}
factor *= weight;
}
return( result );
}
Image *Image::Highlight( int n_images, Image *images[], const Rgb threshold, const Rgb ref_colour )
{
if ( n_images <= 0 ) return( 0 );
if ( n_images == 1 ) return( new Image( *images[0] ) );
int width = images[0]->width;
int height = images[0]->height;
int colours = images[0]->colours;
for ( int i = 1; i < n_images; i++ )
{
if ( !(width == images[i]->width && height == images[i]->height && colours == images[i]->colours) )
{
Panic( "Attempt to highlight different sized images, expected %dx%dx%d, got %dx%dx%d, for image %d", width, height, colours, images[i]->width, images[i]->height, images[i]->colours, i );
}
}
Image *result = new Image( width, height, images[0]->colours );
int size = result->size;
for ( int c = 0; c < 3; c++ )
{
for ( int i = 0; i < size; i++ )
{
int count = 0;
uint8_t *pdest = result->buffer+c;
for ( int j = 0; j < n_images; j++ )
{
uint8_t *psrc = images[j]->buffer+c;
if ( (unsigned)abs((*psrc)-RGB_VAL(ref_colour,c)) >= RGB_VAL(threshold,c) )
{
count++;
}
psrc += 3;
}
*pdest = (count*255)/n_images;
pdest += 3;
}
}
return( result );
}
Image *Image::Delta( const Image &image ) const
{
if ( !(width == image.width && height == image.height && colours == image.colours) )
{
Panic( "Attempt to get delta of different sized images, expected %dx%dx%d, got %dx%dx%d", width, height, colours, image.width, image.height, image.colours );
}
Image *result = new Image( width, height, 1 );
unsigned char *psrc = buffer;
unsigned char *pref = image.buffer;
unsigned char *pdiff = result->buffer;
if ( colours == 1 )
{
while( psrc < (buffer+size) )
{
//*pdiff++ = abs( *psrc++ - *pref++ );
//*pdiff++ = ABSDIFF( *psrc, *pref );
*pdiff++ = abs_table[*psrc++ - *pref++];
//psrc++;
//pref++;
}
}
else
{
register int red, green, blue;
while( psrc < (buffer+size) )
{
if ( config.y_image_deltas )
{
//Info( "RS:%d, RR: %d", *psrc, *pref );
red = y_r_table[*psrc++ - *pref++];
//Info( "GS:%d, GR: %d", *psrc, *pref );
green = y_g_table[*psrc++ - *pref++];
//Info( "BS:%d, BR: %d", *psrc, *pref );
blue = y_b_table[*psrc++ - *pref++];
//Info( "R:%d, G:%d, B:%d, D:%d", red, green, blue, abs_table[red + green + blue] );
*pdiff++ = abs_table[red + green + blue];
}
else
{
red = abs_table[*psrc++ - *pref++];
green = abs_table[*psrc++ - *pref++];
blue = abs_table[*psrc++ - *pref++];
// This is uses an RMS function, all floating point and
// rather too slow
//*pdiff++ = (uint8_t)sqrt((red*red + green*green + blue*blue)/3);
// This just uses the average difference, much faster
*pdiff++ = (uint8_t)((red + green + blue)/3);
}
}
}
return( result );
}
const Coord Image::centreCoord( const char *text )
{
int index = 0;
int line_no = 0;
int text_len = strlen( text );
int line_len = 0;
int max_line_len = 0;
const char *line = text;
while ( (index < text_len) && (line_len = strcspn( line, "\n" )) )
{
if ( line_len > max_line_len )
max_line_len = line_len;
index += line_len;
while ( text[index] == '\n' )
{
index++;
}
line = text+index;
line_no++;
}
int x = (width - (max_line_len * CHAR_WIDTH) ) / 2;
int y = (height - (line_no * LINE_HEIGHT) ) / 2;
return( Coord( x, y ) );
}
void Image::Annotate( const char *p_text, const Coord &coord, const Rgb fg_colour, const Rgb bg_colour )
{
strncpy( text, p_text, sizeof(text) );
int index = 0;
int line_no = 0;
int text_len = strlen( text );
int line_len = 0;
const char *line = text;
char fg_r_col = RGB_RED_VAL(fg_colour);
char fg_g_col = RGB_GREEN_VAL(fg_colour);
char fg_b_col = RGB_BLUE_VAL(fg_colour);
char fg_bw_col = (fg_r_col+fg_g_col+fg_b_col)/3;
bool fg_trans = (fg_colour == RGB_TRANSPARENT);
char bg_r_col = RGB_RED_VAL(bg_colour);
char bg_g_col = RGB_GREEN_VAL(bg_colour);
char bg_b_col = RGB_BLUE_VAL(bg_colour);
char bg_bw_col = (bg_r_col+bg_g_col+bg_b_col)/3;
bool bg_trans = (bg_colour == RGB_TRANSPARENT);
while ( (index < text_len) && (line_len = strcspn( line, "\n" )) )
{
int line_width = line_len * CHAR_WIDTH;
int lo_line_x = coord.X();
int lo_line_y = coord.Y() + (line_no * LINE_HEIGHT);
int min_line_x = 0;
int max_line_x = width - line_width;
int min_line_y = 0;
int max_line_y = height - LINE_HEIGHT;
if ( lo_line_x > max_line_x )
lo_line_x = max_line_x;
if ( lo_line_x < min_line_x )
lo_line_x = min_line_x;
if ( lo_line_y > max_line_y )
lo_line_y = max_line_y;
if ( lo_line_y < min_line_y )
lo_line_y = min_line_y;
int hi_line_x = lo_line_x + line_width;
int hi_line_y = lo_line_y + LINE_HEIGHT;
// Clip anything that runs off the right of the screen
if ( hi_line_x > width )
hi_line_x = width;
if ( hi_line_y > height )
hi_line_y = height;
if ( colours == 1 )
{
unsigned char *ptr = &buffer[(lo_line_y*width)+lo_line_x];
for ( int y = lo_line_y, r = 0; y < hi_line_y && r < CHAR_HEIGHT; y++, r++, ptr += width )
{
unsigned char *temp_ptr = ptr;
for ( int x = lo_line_x, c = 0; x < hi_line_x && c < line_len; c++ )
{
int f = fontdata[(line[c] * CHAR_HEIGHT) + r];
for ( int i = 0; i < CHAR_WIDTH && x < hi_line_x; i++, x++, temp_ptr++ )
{
if ( f & (0x80 >> i) )
{
if ( !fg_trans )
*temp_ptr = fg_bw_col;
}
else if ( !bg_trans )
{
*temp_ptr = bg_bw_col;
}
}
}
}
}
else
{
int wc = width * colours;
unsigned char *ptr = &buffer[((lo_line_y*width)+lo_line_x)*colours];
for ( int y = lo_line_y, r = 0; y < hi_line_y && r < CHAR_HEIGHT; y++, r++, ptr += wc )
{
unsigned char *temp_ptr = ptr;
for ( int x = lo_line_x, c = 0; x < hi_line_x && c < line_len; c++ )
{
int f = fontdata[(line[c] * CHAR_HEIGHT) + r];
for ( int i = 0; i < CHAR_WIDTH && x < hi_line_x; i++, x++, temp_ptr += colours )
{
if ( f & (0x80 >> i) )
{
if ( !fg_trans )
{
RED(temp_ptr) = fg_r_col;
GREEN(temp_ptr) = fg_g_col;
BLUE(temp_ptr) = fg_b_col;
}
}
else if ( !bg_trans )
{
RED(temp_ptr) = bg_r_col;
GREEN(temp_ptr) = bg_g_col;
BLUE(temp_ptr) = bg_b_col;
}
}
}
}
}
index += line_len;
while ( text[index] == '\n' )
{
index++;
}
line = text+index;
line_no++;
}
}
void Image::Timestamp( const char *label, const time_t when, const Coord &coord )
{
char time_text[64];
strftime( time_text, sizeof(time_text), "%y/%m/%d %H:%M:%S", localtime( &when ) );
char text[64];
if ( label )
{
snprintf( text, sizeof(text), "%s - %s", label, time_text );
Annotate( text, coord );
}
else
{
Annotate( time_text, coord );
}
}
void Image::Colourise()
{
if ( colours == 1 )
{
colours = 3;
size = width * height * 3;
uint8_t *new_buffer = new uint8_t[size];
uint8_t *psrc = buffer;
uint8_t *pdest = new_buffer;
while( pdest < (new_buffer+size) )
{
RED(pdest) = GREEN(pdest) = BLUE(pdest) = *psrc++;
pdest += 3;
}
delete[] buffer;
buffer = new_buffer;
}
}
void Image::DeColourise()
{
if ( colours == 3 )
{
colours = 1;
size = width * height;
uint8_t *psrc = buffer;
uint8_t *pdest = buffer;
while( pdest < (buffer+size) )
{
*pdest++ = (uint8_t)sqrt((RED(psrc) + GREEN(psrc) + BLUE(psrc))/3);
psrc += 3;
}
}
}
void Image::Fill( Rgb colour, const Box *limits )
{
if ( !(colours == 1 || colours == 3 ) )
{
Panic( "Attempt to fill image with unexpected colours %d", colours );
}
int lo_x = limits?limits->Lo().X():0;
int lo_y = limits?limits->Lo().Y():0;
int hi_x = limits?limits->Hi().X():width-1;
int hi_y = limits?limits->Hi().Y():height-1;
if ( colours == 1 )
{
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[(y*width)+lo_x];
for ( int x = lo_x; x <= hi_x; x++ )
{
*p++ = colour;
}
}
}
else if ( colours == 3 )
{
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++ )
{
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
p += colours;
}
}
}
}
void Image::Fill( Rgb colour, int density, const Box *limits )
{
if ( !(colours == 1 || colours == 3 ) )
{
Panic( "Attempt to fill image with unexpected colours %d", colours );
}
int lo_x = limits?limits->Lo().X():0;
int lo_y = limits?limits->Lo().Y():0;
int hi_x = limits?limits->Hi().X():width-1;
int hi_y = limits?limits->Hi().Y():height-1;
for ( int y = lo_y; y <= hi_y; y++ )
{
unsigned char *p = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++, p += colours )
{
if ( ( x == lo_x || x == hi_x || y == lo_y || y == hi_y ) || (!(x%density) && !(y%density) ) )
{
if ( colours == 1 )
{
*p = colour;
}
else if ( colours == 3 )
{
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
}
}
void Image::Outline( Rgb colour, const Polygon &polygon )
{
if ( !(colours == 1 || colours == 3 ) )
{
Panic( "Attempt to outline image with unexpected colours %d", colours );
}
int n_coords = polygon.getNumCoords();
for ( int j = 0, i = n_coords-1; j < n_coords; i = j++ )
{
const Coord &p1 = polygon.getCoord( i );
const Coord &p2 = polygon.getCoord( j );
int x1 = p1.X();
int x2 = p2.X();
int y1 = p1.Y();
int y2 = p2.Y();
double dx = x2 - x1;
double dy = y2 - y1;
double grad;
Debug( 9, "dx: %.2lf, dy: %.2lf", dx, dy );
if ( fabs(dx) <= fabs(dy) )
{
Debug( 9, "dx <= dy" );
if ( y1 != y2 )
grad = dx/dy;
else
grad = width;
double x;
int y, yinc = (y1<y2)?1:-1;
grad *= yinc;
if ( colours == 1 )
{
Debug( 9, "x1:%d, x2:%d, y1:%d, y2:%d, gr:%.2f", x1, x2, y1, y2, grad );
for ( x = x1, y = y1; y != y2; y += yinc, x += grad )
{
Debug( 9, "x:%.2f, y:%d", x, y );
buffer[(y*width)+int(round(x))] = colour;
}
}
else if ( colours == 3 )
{
for ( x = x1, y = y1; y != y2; y += yinc, x += grad )
{
unsigned char *p = &buffer[colours*((y*width)+int(round(x)))];
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
else
{
Debug( 9, "dx > dy" );
if ( x1 != x2 )
grad = dy/dx;
else
grad = height;
Debug( 9, "grad: %.2lf", grad );
double y;
int x, xinc = (x1<x2)?1:-1;
grad *= xinc;
if ( colours == 1 )
{
Debug( 9, "x1:%d, x2:%d, y1:%d, y2:%d, gr:%.2lf", x1, x2, y1, y2, grad );
for ( y = y1, x = x1; x != x2; x += xinc, y += grad )
{
Debug( 9, "x:%d, y:%.2f", x, y );
buffer[(int(round(y))*width)+x] = colour;
}
}
else if ( colours == 3 )
{
for ( y = y1, x = x1; x != x2; x += xinc, y += grad )
{
unsigned char *p = &buffer[colours*((int(round(y))*width)+x)];
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
}
}
void Image::Fill( Rgb colour, int density, const Polygon &polygon )
{
if ( !(colours == 1 || colours == 3 ) )
{
Panic( "Attempt to fill image with unexpected colours %d", colours );
}
int n_coords = polygon.getNumCoords();
int n_global_edges = 0;
Edge global_edges[n_coords];
for ( int j = 0, i = n_coords-1; j < n_coords; i = j++ )
{
const Coord &p1 = polygon.getCoord( i );
const Coord &p2 = polygon.getCoord( j );
int x1 = p1.X();
int x2 = p2.X();
int y1 = p1.Y();
int y2 = p2.Y();
Debug( 9, "x1:%d,y1:%d x2:%d,y2:%d", x1, y1, x2, y2 );
if ( y1 == y2 )
continue;
double dx = x2 - x1;
double dy = y2 - y1;
global_edges[n_global_edges].min_y = y1<y2?y1:y2;
global_edges[n_global_edges].max_y = y1<y2?y2:y1;
global_edges[n_global_edges].min_x = y1<y2?x1:x2;
global_edges[n_global_edges]._1_m = dx/dy;
n_global_edges++;
}
qsort( global_edges, n_global_edges, sizeof(*global_edges), Edge::CompareYX );
#ifndef ZM_DBG_OFF
if ( logLevel() >= Logger::DEBUG9 )
{
for ( int i = 0; i < n_global_edges; i++ )
{
Debug( 9, "%d: min_y: %d, max_y:%d, min_x:%.2f, 1/m:%.2f", i, global_edges[i].min_y, global_edges[i].max_y, global_edges[i].min_x, global_edges[i]._1_m );
}
}
#endif
int n_active_edges = 0;
Edge active_edges[n_global_edges];
int y = global_edges[0].min_y;
do
{
for ( int i = 0; i < n_global_edges; i++ )
{
if ( global_edges[i].min_y == y )
{
Debug( 9, "Moving global edge" );
active_edges[n_active_edges++] = global_edges[i];
if ( i < (n_global_edges-1) )
{
//memcpy( &global_edges[i], &global_edges[i+1], sizeof(*global_edges)*(n_global_edges-i) );
memmove( &global_edges[i], &global_edges[i+1], sizeof(*global_edges)*(n_global_edges-i) );
i--;
}
n_global_edges--;
}
else
{
break;
}
}
qsort( active_edges, n_active_edges, sizeof(*active_edges), Edge::CompareX );
#ifndef ZM_DBG_OFF
if ( logLevel() >= Logger::DEBUG9 )
{
for ( int i = 0; i < n_active_edges; i++ )
{
Debug( 9, "%d - %d: min_y: %d, max_y:%d, min_x:%.2f, 1/m:%.2f", y, i, active_edges[i].min_y, active_edges[i].max_y, active_edges[i].min_x, active_edges[i]._1_m );
}
}
#endif
if ( !(y%density) )
{
//Debug( 9, "%d", y );
for ( int i = 0; i < n_active_edges; )
{
int lo_x = int(round(active_edges[i++].min_x));
int hi_x = int(round(active_edges[i++].min_x));
unsigned char *p = &buffer[colours*((y*width)+lo_x)];
for ( int x = lo_x; x <= hi_x; x++, p += colours )
{
if ( !(x%density) )
{
//Debug( 9, " %d", x );
if ( colours == 1 )
{
*p = colour;
}
else
{
RED(p) = RGB_RED_VAL(colour);
GREEN(p) = RGB_GREEN_VAL(colour);
BLUE(p) = RGB_BLUE_VAL(colour);
}
}
}
}
}
y++;
for ( int i = n_active_edges-1; i >= 0; i-- )
{
if ( y >= active_edges[i].max_y ) // Or >= as per sheets
{
Debug( 9, "Deleting active_edge" );
if ( i < (n_active_edges-1) )
{
//memcpy( &active_edges[i], &active_edges[i+1], sizeof(*active_edges)*(n_active_edges-i) );
memmove( &active_edges[i], &active_edges[i+1], sizeof(*active_edges)*(n_active_edges-i) );
}
n_active_edges--;
}
else
{
active_edges[i].min_x += active_edges[i]._1_m;
}
}
} while ( n_global_edges || n_active_edges );
}
void Image::Fill( Rgb colour, const Polygon &polygon )
{
Fill( colour, 1, polygon );
}
void Image::Rotate( int angle )
{
angle %= 360;
if ( !angle )
{
return;
}
if ( angle%90 )
{
return;
}
static unsigned char rotate_buffer[ZM_MAX_IMAGE_SIZE];
switch( angle )
{
case 90 :
{
int temp = width;
width = height;
height = temp;
int line_bytes = width*colours;
unsigned char *s_ptr = buffer;
if ( colours == 1 )
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+i;
for ( int j = height-1; j >= 0; j-- )
{
*d_ptr = *s_ptr++;
d_ptr += line_bytes;
}
}
}
else
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+(3*i);
for ( int j = height-1; j >= 0; j-- )
{
*d_ptr = *s_ptr++;
*(d_ptr+1) = *s_ptr++;
*(d_ptr+2) = *s_ptr++;
d_ptr += line_bytes;
}
}
}
break;
}
case 180 :
{
unsigned char *s_ptr = buffer+size;
unsigned char *d_ptr = rotate_buffer;
if ( colours == 1 )
{
while( s_ptr > buffer )
{
s_ptr--;
*d_ptr++ = *s_ptr;
}
}
else
{
while( s_ptr > buffer )
{
s_ptr -= 3;
*d_ptr++ = *s_ptr;
*d_ptr++ = *(s_ptr+1);
*d_ptr++ = *(s_ptr+2);
}
}
break;
}
case 270 :
{
int temp = width;
width = height;
height = temp;
int line_bytes = width*colours;
unsigned char *s_ptr = buffer+size;
if ( colours == 1 )
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+i;
for ( int j = height-1; j >= 0; j-- )
{
s_ptr--;
*d_ptr = *s_ptr;
d_ptr += line_bytes;
}
}
}
else
{
unsigned char *d_ptr;
for ( int i = width-1; i >= 0; i-- )
{
d_ptr = rotate_buffer+(3*i);
for ( int j = height-1; j >= 0; j-- )
{
*(d_ptr+2) = *(--s_ptr);
*(d_ptr+1) = *(--s_ptr);
*d_ptr = *(--s_ptr);
d_ptr += line_bytes;
}
}
}
break;
}
}
memcpy( buffer, rotate_buffer, size );
}
void Image::Flip( bool leftright )
{
static unsigned char flip_buffer[ZM_MAX_IMAGE_SIZE];
int line_bytes = width*colours;
int line_bytes2 = 2*line_bytes;
if ( leftright )
{
// Horizontal flip, left to right
unsigned char *s_ptr = buffer+line_bytes;
unsigned char *d_ptr = flip_buffer;
unsigned char *max_d_ptr = flip_buffer + size;
if ( colours == 1 )
{
while( d_ptr < max_d_ptr )
{
for ( int j = 0; j < width; j++ )
{
s_ptr--;
*d_ptr++ = *s_ptr;
}
s_ptr += line_bytes2;
}
}
else
{
while( d_ptr < max_d_ptr )
{
for ( int j = 0; j < width; j++ )
{
s_ptr -= 3;
*d_ptr++ = *s_ptr;
*d_ptr++ = *(s_ptr+1);
*d_ptr++ = *(s_ptr+2);
}
s_ptr += line_bytes2;
}
}
}
else
{
// Vertical flip, top to bottom
unsigned char *s_ptr = buffer+(height*line_bytes);
unsigned char *d_ptr = flip_buffer;
while( s_ptr > buffer )
{
s_ptr -= line_bytes;
memcpy( d_ptr, s_ptr, line_bytes );
d_ptr += line_bytes;
}
}
memcpy( buffer, flip_buffer, size );
}
void Image::Scale( unsigned int factor )
{
if ( !factor )
{
Error( "Bogus scale factor %d found", factor );
return;
}
if ( factor == ZM_SCALE_BASE )
{
return;
}
static unsigned char scale_buffer[ZM_MAX_IMAGE_SIZE];
unsigned int new_width = (width*factor)/ZM_SCALE_BASE;
unsigned int new_height = (height*factor)/ZM_SCALE_BASE;
if ( factor > ZM_SCALE_BASE )
{
unsigned char *pd = scale_buffer;
unsigned int wc = width*colours;
unsigned int nwc = new_width*colours;
unsigned int h_count = ZM_SCALE_BASE/2;
unsigned int last_h_index = 0;
unsigned int last_w_index = 0;
unsigned int h_index;
for ( int y = 0; y < height; y++ )
{
unsigned char *ps = &buffer[y*wc];
unsigned int w_count = ZM_SCALE_BASE/2;
unsigned int w_index;
last_w_index = 0;
for ( int x = 0; x < width; x++ )
{
w_count += factor;
w_index = w_count/ZM_SCALE_BASE;
for ( int f = last_w_index; f < w_index; f++ )
{
for ( int c = 0; c < colours; c++ )
{
*pd++ = *(ps+c);
}
}
ps += colours;
last_w_index = w_index;
}
h_count += factor;
h_index = h_count/ZM_SCALE_BASE;
for ( int f = last_h_index+1; f < h_index; f++ )
{
memcpy( pd, pd-nwc, nwc );
pd += nwc;
}
last_h_index = h_index;
}
new_width = last_w_index;
new_height = last_h_index;
}
else
{
unsigned char *pd = scale_buffer;
unsigned int wc = width*colours;
unsigned int xstart = factor/2;
unsigned int ystart = factor/2;
unsigned int h_count = ystart;
unsigned int last_h_index = 0;
unsigned int last_w_index = 0;
unsigned int h_index;
for ( unsigned int y = 0; y < height; y++ )
{
h_count += factor;
h_index = h_count/ZM_SCALE_BASE;
if ( h_index > last_h_index )
{
unsigned int w_count = xstart;
unsigned int w_index;
last_w_index = 0;
unsigned char *ps = &buffer[y*wc];
for ( unsigned int x = 0; x < width; x++ )
{
w_count += factor;
w_index = w_count/ZM_SCALE_BASE;
if ( w_index > last_w_index )
{
for ( int c = 0; c < colours; c++ )
{
*pd++ = *ps++;
}
}
else
{
ps += colours;
}
last_w_index = w_index;
}
}
last_h_index = h_index;
}
new_width = last_w_index;
new_height = last_h_index;
}
Assign( new_width, new_height, colours, scale_buffer );
}