Merge pull request #3370 from SudoMike/add_benchmarks

Add a zmbenchmark program
This commit is contained in:
Isaac Connor 2021-10-12 13:43:00 -04:00 committed by GitHub
commit 0bac052a0a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 371 additions and 0 deletions

View File

@ -107,6 +107,7 @@ endif()
add_executable(zmc zmc.cpp)
add_executable(zms zms.cpp)
add_executable(zmu zmu.cpp)
add_executable(zmbenchmark zmbenchmark.cpp)
target_link_libraries(zmc
PRIVATE
@ -129,6 +130,13 @@ target_link_libraries(zmu
${ZM_EXTRA_LIBS}
${CMAKE_DL_LIBS})
target_link_libraries(zmbenchmark
PRIVATE
zm-core-interface
zm
${ZM_EXTRA_LIBS}
${CMAKE_DL_LIBS})
# Generate man files for the binaries destined for the bin folder
if(BUILD_MAN)
foreach(CBINARY zmc zmu)

View File

@ -83,4 +83,41 @@ Duration duration_cast(timeval const &tv) {
}
}
//
// This can be used for benchmarking. It will measure the time in between
// its constructor and destructor (or when you call Finish()) and add that
// duration to a microseconds clock.
//
class TimeSegmentAdder {
public:
TimeSegmentAdder(Microseconds &in_target) :
target_(in_target),
start_time_(std::chrono::steady_clock::now()),
finished_(false) {
}
~TimeSegmentAdder() {
Finish();
}
// Call this to stop the timer and add the timed duration to `target`.
void Finish() {
if (!finished_) {
const TimePoint end_time = std::chrono::steady_clock::now();
target_ += (std::chrono::duration_cast<Microseconds>(end_time - start_time_));
}
finished_ = true;
}
private:
// This is where we will add our duration to.
Microseconds &target_;
// The time we started.
const TimePoint start_time_;
// True when it has finished timing.
bool finished_;
};
#endif // ZM_TIME_H

326
src/zmbenchmark.cpp Normal file
View File

@ -0,0 +1,326 @@
//
// ZoneMinder Benchmark, $Date$, $Revision$
// Copyright (C) 2001-2008 Philip Coombes
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
//
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <memory>
#include <random>
#include <utility>
#include "zm_config.h"
#include "zm_image.h"
#include "zm_monitor.h"
#include "zm_time.h"
#include "zm_utils.h"
#include "zm_zone.h"
static std::mt19937 mt_rand(111);
//
// This allows you to feed in a set of columns and timing rows, and print it
// out in a nice-looking table.
//
class TimingsTable {
public:
explicit TimingsTable(std::vector<std::string> in_columns) : columns_(std::move(in_columns)) {}
//
// Add a row to the end of the table.
//
// Args:
// label: The name of the row (printed in the first column).
// timings: The values for all the other columns in this row.
void AddRow(const std::string &label, const std::vector<Microseconds> &timings) {
assert(timings.size() == columns_.size());
Row row;
row.label = label;
row.timings = timings;
rows_.push_back(row);
}
//
// Print out the table.
//
// Args:
// columnPad: # characters between table columns
//
void Print(const int column_pad = 5) {
// Figure out column widths.
std::vector<size_t> widths(columns_.size() + 1);
// The first width is the max of the row labels.
auto result = std::max_element(rows_.begin(),
rows_.end(),
[](const Row &a, const Row &b) -> bool {
return a.label.length() < b.label.length();
});
widths[0] = result->label.length() + column_pad;
// Calculate the rest of the column widths.
for (size_t i = 0 ; i < columns_.size() ; i++)
widths[i + 1] = columns_[i].length() + column_pad;
auto PrintColStr = [&](size_t icol, const std::string &str) {
printf("%s", str.c_str());
PrintPadding(widths[icol] - str.length());
};
// Print the header.
PrintColStr(0, "");
for (size_t i = 0 ; i < columns_.size() ; i++) {
PrintColStr(i + 1, columns_[i]);
}
printf("\n");
// Print the timings rows.
for (const Row &row : rows_) {
PrintColStr(0, row.label);
for (size_t i = 0 ; i < row.timings.size() ; i++) {
std::string num = stringtf("%.2f", std::chrono::duration_cast<FPSeconds>(row.timings[i]).count());
PrintColStr(i + 1, num);
}
printf("\n");
}
}
private:
static void PrintPadding(size_t count) {
std::string str(count, ' ');
printf("%s", str.c_str());
}
struct Row {
std::string label;
std::vector<Microseconds> timings;
};
std::vector<std::string> columns_;
std::vector<Row> rows_;
};
//
// Generate a greyscale image that simulates a delta that can be fed to
// Zone::CheckAlarms. This first creates a black image, and then it fills
// a box of a certain size inside the image with random data. This is to simulate
// a typical scene where most of the scene doesn't change except a specific region.
//
// Args:
// changeBoxPercent: 0-100 value telling how large the box with random data should be.
// Set to 0 to leave the whole thing black.
// width: The width of the new image.
// height: The height of the new image.
//
// Return:
// An image with all pixels initialized to values in the [minVal,maxVal] range.
//
std::shared_ptr<Image> GenerateRandomImage(
const int change_box_percent,
const int width = 3840,
const int height = 2160) {
// Create the image.
Image *image = new Image(width, height, ZM_COLOUR_GRAY8, ZM_SUBPIX_ORDER_NONE);
// Set it to black initially.
memset((void *) image->Buffer(0, 0), 0, (size_t) image->LineSize() * (size_t) image->Height());
// Now randomize the pixels inside a box.
const int box_width = (width * change_box_percent) / 100;
const int box_height = (height * change_box_percent) / 100;
const int box_x = (int) ((uint64_t) mt_rand() * (width - box_width) / RAND_MAX);
const int box_y = (int) ((uint64_t) mt_rand() * (height - box_height) / RAND_MAX);
for (int y = 0 ; y < box_height ; y++) {
uint8_t *row = (uint8_t *) image->Buffer(box_x, box_y + y);
for (int x = 0 ; x < box_width ; x++) {
row[x] = (uint8_t) mt_rand();
}
}
return std::shared_ptr<Image>(image);
}
//
// This is used to help rig up Monitor benchmarks.
//
class TestMonitor : public Monitor {
public:
TestMonitor(int width, int height) : cur_zone_id(111) {
this->width = width;
this->height = height;
// Create a dummy ref_image.
std::shared_ptr<Image> tempImage = GenerateRandomImage(0, width, height);
ref_image = *tempImage;
shared_data = &temp_shared_data;
}
//
// Add a new zone to this monitor.
//
// Args:
// checkMethod: This controls how this zone will actually do motion detection.
//
// p_filter_box: The size of the filter to use.
//
void AddZone(Zone::CheckMethod checkMethod, const Vector2 &p_filter_box = Vector2(5, 5)) {
const int p_min_pixel_threshold = 50;
const int p_max_pixel_threshold = 255;
const int p_min_alarm_pixels = 1000;
const int p_max_alarm_pixels = 10000000;
const int zone_id = cur_zone_id++;
const std::string zone_label = std::string("zone_") + std::to_string(zone_id);
const Zone::ZoneType zone_type = Zone::ZoneType::ACTIVE;
const Polygon poly({Vector2(0, 0),
Vector2(width - 1, 0),
Vector2(width - 1, height - 1),
Vector2(0, height - 1)});
Zone zone(this,
zone_id,
zone_label.c_str(),
zone_type,
poly,
kRGBGreen,
Zone::CheckMethod::FILTERED_PIXELS,
p_min_pixel_threshold,
p_max_pixel_threshold,
p_min_alarm_pixels,
p_max_alarm_pixels,
p_filter_box);
zones.push_back(zone);
}
void SetRefImage(const Image *image) {
ref_image = *image;
}
private:
SharedData temp_shared_data;
int cur_zone_id;
};
//
// Run zone benchmarks on the given image.
//
// Args:
// label: A label to be printed before the output.
//
// image: The image to run the tests on.
//
// p_filter_box: The size of the filter to use for alarm detection.
//
// Return:
// The average time taken for each DetectMotion call.
//
Microseconds RunDetectMotionBenchmark(const std::string &label,
const std::shared_ptr<Image>& image,
const Vector2 &p_filter_box) {
// Create a monitor to use for the benchmark. Give it 1 zone that uses
// a 5x5 filter.
TestMonitor testMonitor(image->Width(), image->Height());
testMonitor.AddZone(Zone::CheckMethod::FILTERED_PIXELS, p_filter_box);
// Generate a black image to use as the reference image.
std::shared_ptr<Image> blackImage = GenerateRandomImage(
0, image->Width(), image->Height());
testMonitor.SetRefImage(blackImage.get());
Microseconds totalTimeTaken(0);
// Run a series of passes over DetectMotion.
const int numPasses = 10;
for (int i = 0 ; i < numPasses ; i++) {
printf("\r%s - pass %2d / %2d ", label.c_str(), i + 1, numPasses);
fflush(stdout);
TimeSegmentAdder adder(totalTimeTaken);
Event::StringSet zoneSet;
testMonitor.DetectMotion(*image, zoneSet);
}
printf("\n");
return totalTimeTaken / numPasses;
}
//
// This runs a set of Monitor::DetectMotion benchmarks, one for each of the
// "delta box percents" that are passed in. This adds one row to the
// TimingsTable specified.
//
// Args:
// table: The table to add timings into.
//
// deltaBoxPercents: Each of these defines a box size in the delta images
// passed to DetectMotion (larger boxes make it slower, sometimes significantly so).
//
// p_filter_box: Defines the filter size used in DetectMotion.
//
void RunDetectMotionBenchmarks(
TimingsTable &table,
const std::vector<int> &delta_box_percents,
const Vector2 &p_filter_box) {
std::vector<Microseconds> timings;
for (int percent : delta_box_percents) {
Microseconds timing = RunDetectMotionBenchmark(
std::string("DetectMotion: ") + std::to_string(p_filter_box.x_) + "x" + std::to_string(p_filter_box.y_)
+ " box, " + std::to_string(percent) + "% delta",
GenerateRandomImage(percent),
p_filter_box);
timings.push_back(timing);
}
table.AddRow(
std::to_string(p_filter_box.x_) + "x" + std::to_string(p_filter_box.y_) + " filter",
timings);
}
int main(int argc, char *argv[]) {
// Init global stuff that we need.
config.font_file_location = "../fonts/default.zmfnt";
config.event_close_mode = "time";
config.cpu_extensions = true;
// Detect SSE version.
HwCapsDetect();
// Setup the column titles for the TimingsTable we'll generate.
// Each column represents how large the box in the image is with delta pixels.
// Each row represents a different filter size.
const std::vector<int> percents = {0, 10, 50, 100};
std::vector<std::string> columns(percents.size());
std::transform(percents.begin(), percents.end(), columns.begin(),
[](const int percent) { return std::to_string(percent) + "% delta (ms)"; });
TimingsTable table(columns);
std::vector<Vector2> filterSizes = {Vector2(3, 3), Vector2(5, 5), Vector2(13, 13)};
for (const auto filterSize : filterSizes) {
RunDetectMotionBenchmarks(table, percents, filterSize);
}
table.Print();
return 0;
}