Print the benchmark results in a nicer table

This commit is contained in:
Mike Dussault 2021-10-11 15:53:29 -07:00
parent e4542de6f2
commit 146ff1ac7a
1 changed files with 142 additions and 29 deletions

View File

@ -17,6 +17,8 @@
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
//
#include <algorithm>
#include <assert.h>
#include <memory>
#include <stdlib.h>
@ -28,15 +30,87 @@
#include "zm_zone.h"
//
// This allows you to feed in a set of columns and timing rows, and print it
// out in a nice-looking table.
//
class TimingsTable {
public:
TimingsTable(const std::vector<std::string> &inColumns) : columns(inColumns) {}
void AddRow(const std::string &label, const std::vector<Microseconds> &timings) {
assert(timings.size() == columns.size());
Row row;
row.label = label;
row.timings = timings;
rows.push_back(row);
}
void Print(const int columnPad = 5) {
// Figure out column widths.
std::vector<int> widths(columns.size() + 1);
// The first width is the max of the row labels.
auto result = std::max_element(rows.begin(), rows.end(), [](const Row &a, const Row &b) -> bool { return a.label.length() < b.label.length(); });
widths[0] = result->label.length() + columnPad;
// Calculate the rest of the column widths.
for (size_t i=0; i < columns.size(); i++)
widths[i+1] = columns[i].length() + columnPad;
auto PrintColStr = [&](size_t icol, const std::string &str) {
printf("%s", str.c_str());
PrintPadding(widths[icol] - str.length());
};
// Print the header.
PrintColStr(0, "");
for (size_t i=0; i < columns.size(); i++) {
PrintColStr(i+1, columns[i]);
}
printf("\n");
// Print the timings rows.
for (const auto &row : rows) {
PrintColStr(0, row.label);
for (size_t i=0; i < row.timings.size(); i++) {
char num[128];
sprintf(num, "%.2f", row.timings[i].count() / 1000.0);
PrintColStr(i+1, num);
}
printf("\n");
}
}
private:
void PrintPadding(int count) {
std::string str(count, ' ');
printf("%s", str.c_str());
}
class Row {
public:
std::string label;
std::vector<Microseconds> timings;
};
std::vector<std::string> columns;
std::vector<Row> rows;
};
//
// Generate a greyscale image that simulates a delta that can be fed to
// Zone::CheckAlarms.
// Zone::CheckAlarms. This first creates a black image, and then it fills
// a box of a certain size inside the image with random data. This is to simulate
// a typical scene where most of the scene doesn't change except a specific region.
//
// Args:
// minVal: 0-255 value telling the minimum (random) value to initialize
// all the pixels to.
// maxVal: 0-255 value telling the maximum (random) value to initialize
// all the pixels to.
// changeBoxPercent: 0-100 value telling how large the box with random data should be.
// Set to 0 to leave the whole thing black.
// width: The width of the new image.
// height: The height of the new image.
//
@ -44,10 +118,9 @@
// An image with all pixels initialized to values in the [minVal,maxVal] range.
//
std::shared_ptr<Image> GenerateRandomImage(
int minVal,
int maxVal,
int width = 3840,
int height = 2160) {
const int changeBoxPercent,
const int width = 3840,
const int height = 2160) {
// Create the image.
Image *image = new Image(
width,
@ -55,15 +128,20 @@ std::shared_ptr<Image> GenerateRandomImage(
ZM_COLOUR_GRAY8,
ZM_SUBPIX_ORDER_NONE);
const int randMax = RAND_MAX;
const int range = maxVal - minVal;
// Set it to black initially.
memset((void*)image->Buffer(0, 0), 0, image->LineSize() * image->Height());
for (int y=0; y < height; y++)
// Now randomize the pixels inside a box.
const int boxWidth = (width * changeBoxPercent) / 100;
const int boxHeight = (height * changeBoxPercent) / 100;
const int boxX = (int)((uint64_t)rand() * (width - boxWidth) / RAND_MAX);
const int boxY = (int)((uint64_t)rand() * (height - boxHeight) / RAND_MAX);
for (int y=0; y < boxHeight; y++)
{
uint8_t *row = (uint8_t*)image->Buffer(0, y);
for (int x=0; x < width; x++) {
uint64_t randVal = rand();
row[x] = (uint8_t)((randVal * range) / randMax + minVal);
uint8_t *row = (uint8_t*)image->Buffer(boxX, boxY + y);
for (int x=0; x < boxWidth; x++) {
row[x] = (uint8_t)rand();
}
}
@ -84,7 +162,7 @@ public:
this->height = height;
// Create a dummy ref_image.
std::shared_ptr<Image> tempImage = GenerateRandomImage(0, 0, width, height);
std::shared_ptr<Image> tempImage = GenerateRandomImage(0, width, height);
ref_image = *tempImage.get();
shared_data = &temp_shared_data;
@ -174,28 +252,33 @@ void PrintCounters(std::vector<CounterInfo> counters) {
// label: A label to be printed before the output.
//
// image: The image to run the tests on.
//
// p_filter_box: The size of the filter to use for alarm detection.
//
// Return:
// The average time taken for each DetectMotion call.
//
void RunZoneBenchmark(const char *label, std::shared_ptr<Image> image) {
Microseconds RunDetectMotionBenchmark(
const std::string &label,
std::shared_ptr<Image> image,
const Vector2 &p_filter_box) {
// Create a monitor to use for the benchmark. Give it 1 zone that uses
// a 5x5 filter.
TestMonitor testMonitor(image->Width(), image->Height());
testMonitor.AddZone(Zone::CheckMethod::FILTERED_PIXELS, Vector2(5,5));
testMonitor.AddZone(Zone::CheckMethod::FILTERED_PIXELS, p_filter_box);
// Generate a black image to use as the reference image.
std::shared_ptr<Image> blackImage = GenerateRandomImage(
0, 0, image->Width(), image->Height());
0, image->Width(), image->Height());
testMonitor.SetRefImage(blackImage.get());
Microseconds totalTimeTaken(0);
printf("\n");
printf("------- %s -------\n", label);
// Run a series of passes over DetectMotion.
const int numPasses = 10;
for (int i=0; i < numPasses; i++)
{
printf("\rPass %2d / %2d ", i+1, numPasses);
printf("\r%s - pass %2d / %2d ", label.c_str(), i+1, numPasses);
fflush(stdout);
TimeSegmentAdder adder(totalTimeTaken);
@ -205,8 +288,27 @@ void RunZoneBenchmark(const char *label, std::shared_ptr<Image> image) {
}
printf("\n");
PrintCounters({
CounterInfo(totalTimeTaken / numPasses, "Time per pass")});
return totalTimeTaken / numPasses;
}
void RunDetectMotionBenchmarks(
TimingsTable &table,
const std::vector<int> &deltaBoxPercents,
const Vector2 &p_filter_box) {
std::vector<Microseconds> timings;
for (int percent : deltaBoxPercents) {
Microseconds timing = RunDetectMotionBenchmark(
std::string("DetectMotion: ") + std::to_string(p_filter_box.x_) + "x" + std::to_string(p_filter_box.y_) + " box, " + std::to_string(percent) + "% delta",
GenerateRandomImage(percent),
p_filter_box);
timings.push_back(timing);
}
table.AddRow(
std::to_string(p_filter_box.x_) + "x" + std::to_string(p_filter_box.y_) + " filter",
timings);
}
@ -220,11 +322,22 @@ int main(int argc, char *argv[]) {
// Detect SSE version.
HwCapsDetect();
// Setup the column titles for the TimingsTable we'll generate.
// Each column represents how large the box in the image is with delta pixels.
// Each row represents a different filter size.
const std::vector<int> percents = {0, 10, 50, 100};
std::vector<std::string> columns(percents.size());
std::transform(percents.begin(), percents.end(), columns.begin(),
[](const int percent) {return std::to_string(percent) + "% delta (ms)";});
TimingsTable table(columns);
RunZoneBenchmark("0% delta", GenerateRandomImage(0, 0));
RunZoneBenchmark("50% delta", GenerateRandomImage(0, 255));
RunZoneBenchmark("100% delta", GenerateRandomImage(255, 255));
std::vector<Vector2> filterSizes = {Vector2(3,3), Vector2(5,5), Vector2(13,13)};
for (const auto filterSize : filterSizes) {
RunDetectMotionBenchmarks(table, percents, filterSize);
}
table.Print();
return 0;
}