// // ZoneMinder Monitor Class Interfaces, $Date$, $Revision$ // Copyright (C) 2003 Philip Coombes // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // #ifndef ZM_MONITOR_H #define ZM_MONITOR_H #include static struct timezone dummy_tz; // To avoid declaring pointless one each time we use gettimeofday #include "zm_coord.h" #include "zm_image.h" #include "zm_zone.h" #include "zm_camera.h" // // This is the main class for monitors. Each monitor is associated // with a camera and is effectivaly a collector for events. // class Monitor { public: typedef enum { QUERY=0, CAPTURE, ANALYSIS } Purpose; typedef enum { CONTINUOUS=0, TRIGGERED, } RunMode; typedef enum { OFF=1, MONITOR, MODECT, RECORD, MOCORD } Function; typedef enum { ROTATE_0=1, ROTATE_90, ROTATE_180, ROTATE_270 } Orientation; typedef enum { IDLE, ALARM, ALERT, TAPE } State; protected: // These are read from the DB and thereafter remain unchanged int id; char *name; unsigned int width; // Normally the same as the camera, but not if partly rotated unsigned int height; // Normally the same as the camera, but not if partly rotated Function function; // What the monitor is doing RunMode run_mode; // Whether the monitor is running continuously or is triggered Orientation orientation; // Whether the image has to be rotated at all char label_format[64]; // The format of the timestamp on the images Coord label_coord; // The coordinates of the timestamp on the images int image_buffer_count; // Size of circular image buffer, at least twice the size of the pre_event_count int warmup_count; // How many images to process before looking for events int pre_event_count; // How many images to hold and prepend to an alarm event int post_event_count; // How many unalarmed images must occur before the alarm state is reset int section_length; // How long events should last in continuous modes int capture_delay; // How long we wait between capture frames int fps_report_interval;// How many images should be captured/processed between reporting the current FPS int ref_blend_perc; // Percentage of new image going into reference image. Purpose purpose; // What this monitor has been created to do double fps; Image image; Image ref_image; int event_count; int image_count; int first_alarm_count; int last_alarm_count; int buffer_count; State state; int n_zones; Zone **zones; Event *event; time_t start_time; time_t last_fps_time; int shmid; typedef struct Snapshot { struct timeval *timestamp; Image *image; }; Snapshot *image_buffer; typedef enum { FORCE_NEUTRAL, FORCE_ON, FORCE_OFF } ForceState; typedef enum { GET_SETTINGS=0x0001, SET_SETTINGS=0x0002 } Action; typedef struct { bool valid; State state; ForceState force_state; int last_write_index; int last_read_index; time_t last_image_time; int last_event; int action; int brightness; int hue; int colour; int contrast; } SharedData; SharedData *shared_data; bool record_event_stats; Camera *camera; public: Monitor( int p_id, char *p_name, int p_function, int p_device, int p_channel, int p_format, int p_width, int p_height, int p_palette, int p_orientation, char *p_label_format, const Coord &p_label_coord, int p_image_buffer_count, int p_warmup_count, int p_pre_event_count, int p_post_event_count, int p_section_length, int p_capture_delay, int p_fps_report_interval, int p_ref_blend_perc, Purpose p_purpose=QUERY, int p_n_zones=0, Zone *p_zones[]=0 ); Monitor( int p_id, char *p_name, int p_function, const char *p_host, const char *p_port, const char *p_path, int p_width, int p_height, int p_palette, int p_orientation, char *p_label_format, const Coord &p_label_coord, int p_image_buffer_count, int p_warmup_count, int p_pre_event_count, int p_post_event_count, int p_section_length, int p_capture_delay, int p_fps_report_interval, int p_ref_blend_perc, Purpose p_purpose=QUERY, int p_n_zones=0, Zone *p_zones[]=0 ); ~Monitor(); void Initialise(); void AddZones( int p_n_zones, Zone *p_zones[] ); inline int ShmValid() const { return( shared_data->valid ); } inline int Id() const { return( id ); } inline char *Name() const { return( name ); } State GetState() const; int GetImage( int index=-1 ) const; struct timeval GetTimestamp( int index=-1 ) const; int GetCaptureDelay() const { return( capture_delay ); } unsigned int GetLastReadIndex() const; unsigned int GetLastWriteIndex() const; unsigned int GetLastEvent() const; double GetFPS() const; void ForceAlarmOn(); void ForceAlarmOff(); void CancelForced(); int Brightness( int p_brightness=-1 ); int Hue( int p_hue=-1 ); int Colour( int p_colour=-1 ); int Contrast( int p_contrast=-1 ); bool DumpSettings( char *output, bool verbose ); void DumpZoneImage(); unsigned int Width() const { return( width ); } unsigned int Height() const { return( height ); } inline int PreCapture() { return( camera->PreCapture() ); } inline int PostCapture() { if ( camera->PostCapture( image ) == 0 ) { if ( orientation != ROTATE_0 ) { image.Rotate( (orientation-1)*90 ); } char label_time_text[64]; char label_text[64]; time_t now = time( 0 ); if ( label_format[0] ) { strftime( label_time_text, sizeof(label_time_text), label_format, localtime( &now ) ); sprintf( label_text, label_time_text, name ); image.Annotate( label_text, label_coord ); } int index = image_count%image_buffer_count; if ( index == shared_data->last_read_index && function > MONITOR ) { Warning(( "Buffer overrun at index %d\n", index )); } gettimeofday( image_buffer[index].timestamp, &dummy_tz ); image_buffer[index].image->CopyBuffer( image ); shared_data->last_write_index = index; shared_data->last_image_time = image_buffer[index].timestamp->tv_sec; image_count++; if ( image_count && !(image_count%fps_report_interval) ) { fps = double(fps_report_interval)/(now-last_fps_time); Info(( "%s: %d - Capturing at %.2f fps", name, image_count, fps )); last_fps_time = now; } if ( shared_data->action & GET_SETTINGS ) { shared_data->brightness = camera->Brightness(); shared_data->hue = camera->Hue(); shared_data->colour = camera->Colour(); shared_data->contrast = camera->Contrast(); shared_data->action &= ~GET_SETTINGS; } if ( shared_data->action & SET_SETTINGS ) { camera->Brightness( shared_data->brightness ); camera->Hue( shared_data->hue ); camera->Colour( shared_data->colour ); camera->Contrast( shared_data->contrast ); shared_data->action &= ~SET_SETTINGS; } return( 0 ); } return( -1 ); } inline bool Ready() { return( function > MONITOR && image_count > warmup_count ); } void DumpImage( Image *image ) const; bool Analyse(); void Adjust( double ratio ) { ref_image.Blend( image, 0.1 ); } unsigned int Compare( const Image &image ); void ReloadZones(); static int Load( int device, Monitor **&monitors, Purpose purpose=QUERY ); static int Load( const char *host, const char*port, const char*path, Monitor **&monitors, Purpose purpose=QUERY ); static Monitor *Load( int id, bool load_zones=false, Purpose purpose=QUERY ); void StreamImages( unsigned long idle=5000, unsigned long refresh=50, FILE *fd=stdout, time_t ttl=0 ); }; #endif // ZM_MONITOR_H